Spark一个很是重要的特性就是共享变量。
默认状况下,若是在一个算子的函数中使用到了某个外部的变量,那么这个变量的
值会被拷贝到每一个task中。此时每一个task只能操做本身的那份变量副本。若是多个task想要共享某个变量,那么这种方式是作不到的。
Spark为此提供了两种共享变量,一种是Broadcast Variable(广播变量),另外一种是Accumulator(累加变量)。Broadcast Variable会将使用到的变量,仅
仅为每一个节点拷贝一份,更大的用处是优化性能,减小网络传输以及内存消耗。Accumulator则可让多个task共同操做一份变量,主要能够进行累加操做。
Broadcast Variable
Spark提供的Broadcast Variable,是
只读的。而且在
每一个节点上只会有一份副本,而
不会为每一个task都拷贝一份副本。所以其最大做用,就是减小变量到各个节点的网络传输消耗,以及在各个节点上的内存消耗。此外,spark本身内部也使用了高效的广播算法来减小网络消耗。
能够经过调用SparkContext的broadcast()方法,来针对某个变量建立广播变量。而后在算子的函数内,使用到广播变量时,每一个节点只会拷贝一份副本了。每一个节点能够使用广播变量的value()方法获取值。记住,广播变量,是只读的。
val factor = 3
val factorBroadcast = sc.broadcast(factor)
val arr = Array(1, 2, 3, 4, 5)
val rdd = sc.parallelize(arr)
val multipleRdd = rdd.map(num => num * factorBroadcast.value())
multipleRdd.foreach(num => println(num))
Accumulator
Spark提供的Accumulator,主要用于多个节点对一个变量进行共享性的操做。Accumulator只提供了累加的功能,给咱们提供了多个task对一个变量并行操做的功能。可是task只能对Accumulator进行累加操做,不能读取它的值。只有Driver程序能够读取Accumulator的值。
val sumAccumulator = sc.accumulator(0)
val arr = Array(1, 2, 3, 4, 5)
val rdd = sc.parallelize(arr)
rdd.foreach(num => sumAccumulator += num)
println(sumAccumulator.value)
package sparkcore.java;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.broadcast.Broadcast;
/**
* 广播变量
*/
public class BroadcastVariable {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("BroadcastVariable")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// 在java中,建立共享变量,就是调用SparkContext的broadcast()方法
// 获取的返回结果是Broadcast<T>类型
final int factor = 3;
final Broadcast<Integer> factorBroadcast = sc.broadcast(factor);
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> numbers = sc.parallelize(numberList);
// 让集合中的每一个数字,都乘之外部定义的那个factor
JavaRDD<Integer> multipleNumbers = numbers.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
// 使用共享变量时,调用其value()方法,便可获取其内部封装的值
int factor = factorBroadcast.value();
return v1 * factor;
}
});
multipleNumbers.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
sc.close();
}
}
package sparkcore.scala
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object BroadcastVariable {
def main(args: Array[String]) {
val conf = new SparkConf()
.setAppName("BroadcastVariable")
.setMaster("local")
val sc = new SparkContext(conf)
val factor = 3;
val factorBroadcast = sc.broadcast(factor)
val numberArray = Array(1, 2, 3, 4, 5)
val numbers = sc.parallelize(numberArray, 1)
val multipleNumbers = numbers.map { num => num * factorBroadcast.value }
multipleNumbers.foreach { num => println(num) }
}
}
package sparkcore.java;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.Accumulator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction;
/**
* 累加变量
*/
public class AccumulatorVariable {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("Accumulator")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// 建立Accumulator变量
// 须要调用SparkContext的accumulator()方法
final Accumulator<Integer> sum = sc.accumulator(0);
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> numbers = sc.parallelize(numberList);
numbers.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
// 而后在函数内部,就能够对Accumulator变量,调用add()方法,累加值
sum.add(t);
}
});
// 在driver程序中,能够调用Accumulator的value()方法,获取其值
System.out.println(sum.value());
sc.close();
}
}
package sparkcore.scala
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object AccumulatorVariable {
def main(args: Array[String]) {
val conf = new SparkConf()
.setAppName("AccumulatorVariable")
.setMaster("local")
val sc = new SparkContext(conf)
val sum = sc.accumulator(0)
val numberArray = Array(1, 2, 3, 4, 5)
val numbers = sc.parallelize(numberArray, 1)
numbers.foreach { num => sum += num }
println(sum)
}
}