在多线程场景下使用HashMap会形成死循环,CPU100%等问题,因此咱们不能在多线程场景下使用HashMap,另一个集合类HashTable是线程安全的,但其使用synchronized
这种粗粒度的锁来实现的,因此并发场景下性能低下,在多线程(并发)场景下咱们推荐使用ConcurrentHashMap类。 这里放一张ConcurrentHashMap的类图: java
能够看出该类也实现了Map接口,因此一般能够直接替换HashMap使用而不用修改业务代码。node
HashTable之因此性能低下,缘由是多线程竞争同一把锁(HashTable粗暴的为整个存储结构加了锁),而ConcurrentHashMap则改进这了一点。该类经过分段加锁来下降资源竞争,底层的存储数组结构再也不像HashMap同样直接是一个哈希表(数组),而是使用Segment数组来实现分片,Segment类继承了ReentrantLock类,因此它自己也是一个可重入锁,每一个Segment则至关于一个HashMap,一样使用哈希表存储数据,每一个Bucket都是一个链表,其内部实现思想与HashMap基本一致,不一样的是put、remove等方法都是加了锁的。这样分段加锁的好处是,若是两个线程操做的不是同一个Segment,则相互不影响,不用相互等待,从而提高了性能。数组
Segment数组自己是不加锁的,那么在向ConcurrentHashMap中添加元素时,会根据键计算出的HashCode来定位Segment,这个过程由于不涉及修改操做,因此不须要加锁。而针对特定的Segment内部数据进行操做,则须要加锁,下面以JDK1.7版ConcurrentHashMap源码为例进行解读。安全
ConcurrentHashMap底层实现涉及多个内部类,这里简述一下多线程
static final class HashEntry<K,V> { final int hash; final K key; volatile V value; volatile HashEntry<K,V> next; // ... ... }
static final class Segment<K,V> extends ReentrantLock implements Serializable { static final int MAX_SCAN_RETRIES = Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; transient volatile HashEntry<K,V>[] table; transient int count; transient int modCount; transient int threshold; final float loadFactor; Segment(float lf, int threshold, HashEntry<K,V>[] tab) {} final V put(K key, int hash, V value, boolean onlyIfAbsent) {} @SuppressWarnings("unchecked") private void rehash(HashEntry<K,V> node) {} private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {} private void scanAndLock(Object key, int hash) {} final V remove(Object key, int hash, Object value) {} final boolean replace(K key, int hash, V oldValue, V newValue) {} final V replace(K key, int hash, V value) {} final void clear() {} }
ConcurrentHashMap中分段是由Segment数组实现的,而每一个Segment的内部存储结构为哈希表(数组),而每一个Bucket则是由HashEntry构成的链表组成(这点与HashMap是同样的)。并发
下面经过ConcurrentHashMap中的几个主要方法来解读less
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; // 找到恰好比 concurrencyLevel 大或相等的2的整数次幂 while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; // 计算每段容量(取恰好大于等于c的2的整数次幂) int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; // create segments and segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
与HashMap不一样该类的构造方法多了一个concurrencyLevel
参数,该参数主要用于控制分段数,该类的其它构造方法都脱胎与该方法,这里再也不赘述,其中无参构造方法中的参数默认值分别是:initialCapacity=16
、loadFactor=0.75f
、concurrencyLevel=16
。 构造方法中分别初始化了:分段数、每段容器大小、Segment数组和第一个Segment节点。ssh
public boolean isEmpty() { long sum = 0L; final Segment<K,V>[] segments = this.segments; for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j); if (seg != null) { if (seg.count != 0) return false; sum += seg.modCount; } } if (sum != 0L) { // recheck unless no modifications for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j); if (seg != null) { if (seg.count != 0) return false; sum -= seg.modCount; } } if (sum != 0L) return false; } return true; } public int size() { // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. final Segment<K,V>[] segments = this.segments; int size; boolean overflow; // true if size overflows 32 bits long sum; // sum of modCounts long last = 0L; // previous sum int retries = -1; // first iteration isn't retry try { for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // force creation } sum = 0L; size = 0; overflow = false; for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j); if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0) overflow = true; } } if (sum == last) break; last = sum; } } finally { if (retries > RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) segmentAt(segments, j).unlock(); } } return overflow ? Integer.MAX_VALUE : size; }
两个实现方法的思路相同,都是遍历所有Segment,再计算每一个Segment内部元素个数。须要注意的是为了防止在方法执行过程当中,Segment自己会发生变化(如:添加、删除元素等),但遍历过程当中对Segment加锁,方法执行结束后释放锁,因此这两个方法的性能不如HashMap的高(应用场景不一样,自己也没什么可比性)。async
public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); } public V putIfAbsent(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject (segments, (j << SSHIFT) + SBASE)) == null) s = ensureSegment(j); return s.put(key, hash, value, true); } static final class Segment<K,V> extends ReentrantLock implements Serializable { final V put(K key, int hash, V value, boolean onlyIfAbsent) { HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; } }
put方法的逻辑比较深,但有HashMap的源码基础的话,其实也不复杂。在ConcurrentHashMap中的put方法实际上只是根据HashCode找到对应的Segment,这个过程不须要加锁,而实际put动做是由Segment类中的put方法完成的。 该方法相比HashMap中的put方法,只是增长了锁的机制(毕竟是面向多线程场景)。性能
public boolean containsKey(Object key) { Segment<K,V> s; // same as get() except no need for volatile value read HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return true; } } return false; }
只是简单的查找,与size不一样的是,不须要加锁(确实也没有加锁的必要,若是元素存在则再也不添加,可使用putIfAbsent方法)。
public V get(Object key) { Segment<K,V> s; // manually integrate access methods to reduce overhead HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
public V remove(Object key) { int hash = hash(key); Segment<K,V> s = segmentForHash(hash); return s == null ? null : s.remove(key, hash, null); } static final class Segment<K,V> extends ReentrantLock implements Serializable { final V remove(Object key, int hash, Object value) { if (!tryLock()) scanAndLock(key, hash); V oldValue = null; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; HashEntry<K,V> e = entryAt(tab, index); HashEntry<K,V> pred = null; while (e != null) { K k; HashEntry<K,V> next = e.next; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { V v = e.value; if (value == null || value == v || value.equals(v)) { if (pred == null) setEntryAt(tab, index, next); else pred.setNext(next); ++modCount; --count; oldValue = v; } break; } pred = e; e = next; } } finally { unlock(); } return oldValue; } }
偷懒了,偷懒了,最近每天看源码,看得头大,这篇就到这里了(草草结束),主要是理解实现原理,后面再完善细节吧。