若是要将自定义函数或其它库函数应用于Pandas对象,有三种使用方式。pipe()将函数用于表格,apply()将函数用于行或列,applymap()将函数用于元素。算法
能够经过将函数对象和参数做为pipe函数的参数来执行自定义操做,会对整个DataFrame执行操做。数组
# -*- coding=utf-8 -*- import pandas as pd import numpy as np def adder(x, y): return x + y if __name__ == "__main__": df = pd.DataFrame(np.random.randn(5, 3),columns=['col1', 'col2', 'col3']) print(df) df = df.pipe(adder, 1) print(df) # output: # col1 col2 col3 # 0 0.390803 0.940306 -1.300635 # 1 -0.349588 -1.290132 0.415693 # 2 -0.079585 -0.083825 0.262867 # 3 0.582377 0.171701 -1.011748 # 4 -0.466655 1.746269 1.281538 # col1 col2 col3 # 0 1.390803 1.940306 -0.300635 # 1 0.650412 -0.290132 1.415693 # 2 0.920415 0.916175 1.262867 # 3 1.582377 1.171701 -0.011748 # 4 0.533345 2.746269 2.281538
使用apply()函数能够沿DataFrame或Panel的轴执行应用函数,采用可选axis参数。 默认状况下,操做按列执行。app
# -*- coding=utf-8 -*- import pandas as pd import numpy as np def adder(x, y): return x + y if __name__ == "__main__": df = pd.DataFrame(np.random.randn(5, 3), columns=['col1', 'col2', 'col3']) print(df) # 按列执行 result = df.apply(np.sum) print(result) # 按行执行 result = df.apply(np.sum, axis=1) print(result) # output: # col1 col2 col3 # 0 -1.773775 -0.608478 0.602059 # 1 -0.208412 0.969435 -0.292108 # 2 0.776864 -0.768559 -0.389092 # 3 -2.088412 1.133090 1.006486 # 4 0.693241 1.808845 0.772191 # col1 -2.600494 # col2 2.534332 # col3 1.699536 # dtype: float64 # 0 -1.780194 # 1 0.468915 # 2 -0.380788 # 3 0.051164 # 4 3.274277 # dtype: float64
在DataFrame的applymap()函数能够接受任何Python函数,而且返回单个值。dom
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(5, 3), columns=['col1', 'col2', 'col3']) print(df) df = df.applymap(lambda x: x + 1) print(df) # output: # col1 col2 col3 # 0 2.396185 -0.263581 -0.090799 # 1 1.718716 0.876074 -1.067746 # 2 -1.033945 -0.078448 1.036566 # 3 0.553849 0.251312 -0.422640 # 4 -0.896062 1.605349 -0.089430 # col1 col2 col3 # 0 3.396185 0.736419 0.909201 # 1 2.718716 1.876074 -0.067746 # 2 -0.033945 0.921552 2.036566 # 3 1.553849 1.251312 0.577360 # 4 0.103938 2.605349 0.910570
数据清洗是一项复杂且繁琐的工做,同时也是数据分析过程当中最为重要的环节。数据清洗的目的一是经过清洗让数据可用,二是让数据变的更适合进行数据分析工做。所以,脏数据要清洗,干净数据也要清洗。在实际数据分析中,数据清洗将占用项目70%左右的时间。ide
查看每一列有多少缺失值。df.isnull().sum()
查看每一列有多少完整的数据df.shape[0]-df.isnull().sum()
函数
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC')) print(df) print(df.isnull().sum()) print(df.shape[0] - df.isnull().sum()) # output: # A B C # 2019-01-01 1.138325 0.981597 1.359580 # 2019-01-02 -1.622074 0.812393 -0.946351 # 2019-01-03 0.049815 1.194241 0.807209 # 2019-01-04 1.500074 -0.570367 -0.328529 # 2019-01-05 0.465869 1.049651 -0.112453 # 2019-01-06 -1.399495 0.492769 1.961198 # A 0 # B 0 # C 0 # dtype: int64 # A 6 # B 6 # C 6 # dtype: int64
删除列性能
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) del df['D'] # 删除第2列 df.drop(df.columns[2], axis=1, inplace=True) # 删除B列 df.drop('B', axis=1, inplace=True) print(df) # output: # A B C # 2019-01-01 -0.703151 0.753482 -0.624376 # 2019-01-02 -0.396221 -0.832279 -1.419897 # 2019-01-03 -0.179341 -0.368501 -0.300810 # 2019-01-04 0.464156 0.117461 1.502114 # 2019-01-05 -1.022012 -1.612456 1.611377 # 2019-01-06 -0.677521 0.001020 -0.342290 # A # 2019-01-01 -0.703151 # 2019-01-02 -0.396221 # 2019-01-03 -0.179341 # 2019-01-04 0.464156 # 2019-01-05 -1.022012 # 2019-01-06 -0.677521
删除NaN值ui
df.dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False)
axis为轴,0表示对行进行操做,1表示对列进行操做。
how为操做类型,’any’表示只要出现NaN的行或列都删除,’all’表示删除整行或整列都为NaN的行或列。
thresh:NaN的阈值,达到thresh时删除。code
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df.iloc[1, 3] = None df.iloc[2, 2] = None print(df) print(df.dropna(axis=1)) print(df.dropna(how='any')) # output: # A B C D # 2019-01-01 -0.152239 -2.315100 -0.504998 -0.987549 # 2019-01-02 -1.884801 1.046506 -1.618871 NaN # 2019-01-03 0.976682 -1.043107 NaN 0.391338 # 2019-01-04 0.143389 0.951518 0.040632 -0.443944 # 2019-01-05 3.092766 0.787921 -2.408260 -1.111238 # 2019-01-06 -0.179249 0.573734 -0.912023 0.261517 # A B # 2019-01-01 -0.152239 -2.315100 # 2019-01-02 -1.884801 1.046506 # 2019-01-03 0.976682 -1.043107 # 2019-01-04 0.143389 0.951518 # 2019-01-05 3.092766 0.787921 # 2019-01-06 -0.179249 0.573734 # A B C D # 2019-01-01 -0.152239 -2.315100 -0.504998 -0.987549 # 2019-01-04 0.143389 0.951518 0.040632 -0.443944 # 2019-01-05 3.092766 0.787921 -2.408260 -1.111238 # 2019-01-06 -0.179249 0.573734 -0.912023 0.261517
填充NaN值orm
df.fillna(self, value=None, method=None, axis=None, inplace=False,limit=None, downcast=None, **kwargs)
value:填充的值,能够为字典,字典的key为列名称。
inplace:表示是否对源数据进行修改,默认为False。
fillna默认会返回新对象,但也能够对现有对象进行就地修改。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df.iloc[1, 3] = None df.iloc[2, 2] = None print(df) print(df.fillna({'C': 3.14, 'D': 0.0})) # 使用指定值填充 df.fillna(value=3.14, inplace=True) print(df) # output: # A B C D # 2019-01-01 0.490727 -0.603079 0.202922 2.012060 # 2019-01-02 -0.855106 0.305557 0.851141 NaN # 2019-01-03 -0.324215 0.629637 NaN -0.174930 # 2019-01-04 0.085996 0.173265 0.416938 -0.903989 # 2019-01-05 0.009368 0.410056 -1.297822 -2.202893 # 2019-01-06 0.021892 -0.359749 -0.608556 -0.859454 # A B C D # 2019-01-01 0.490727 -0.603079 0.202922 2.012060 # 2019-01-02 -0.855106 0.305557 0.851141 0.000000 # 2019-01-03 -0.324215 0.629637 3.140000 -0.174930 # 2019-01-04 0.085996 0.173265 0.416938 -0.903989 # 2019-01-05 0.009368 0.410056 -1.297822 -2.202893 # 2019-01-06 0.021892 -0.359749 -0.608556 -0.859454 # A B C D # 2019-01-01 0.490727 -0.603079 0.202922 2.012060 # 2019-01-02 -0.855106 0.305557 0.851141 3.140000 # 2019-01-03 -0.324215 0.629637 3.140000 -0.174930 # 2019-01-04 0.085996 0.173265 0.416938 -0.903989 # 2019-01-05 0.009368 0.410056 -1.297822 -2.202893 # 2019-01-06 0.021892 -0.359749 -0.608556 -0.859454
对数据进行布尔填充
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df.iloc[1, 3] = None df.iloc[2, 2] = None print(df) print(pd.isnull(df)) # output: # A B C D # 2019-01-01 -1.337471 0.154446 0.493862 1.278946 # 2019-01-02 2.853301 -0.151376 0.318281 NaN # 2019-01-03 1.094465 0.059063 NaN 0.216805 # 2019-01-04 -0.983091 -1.052905 0.416604 -1.431156 # 2019-01-05 -1.421142 1.015465 -1.851315 -0.680514 # 2019-01-06 0.224378 -0.636699 -0.749040 -0.728368 # A B C D # 2019-01-01 False False False False # 2019-01-02 False False False True # 2019-01-03 False False True False # 2019-01-04 False False False False # 2019-01-05 False False False False # 2019-01-06 False False False False
经过字典键能够进行列选择,获取DataFrame中的一列数据。
生成DataFrame时指定index和columns
import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) # output: # A B C D # 2013-01-01 1.116914 -0.221035 -0.577299 -0.328831 # 2013-01-02 1.764656 1.462838 -0.360678 1.176134 # 2013-01-03 0.144396 -0.594359 -0.548543 1.281829 # 2013-01-04 0.632378 0.895123 -0.757924 -1.325917 # 2013-01-05 0.219125 -1.247446 0.335363 -0.676052 # 2013-01-06 0.963715 -0.131331 0.326482 -0.718461
index和columns也能够在DataFrame建立后指定
import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) df.index = pd.date_range('20130201', periods=df.shape[0]) df.columns = list('abcd') print(df) df.index = pd.date_range('20130301', periods=len(df)) df.columns = list('ABCD') print(df) # output: # A B C D # 2013-01-01 1.588442 1.548420 0.132539 0.410512 # 2013-01-02 0.200415 1.515354 2.275575 -1.533603 # 2013-01-03 0.838294 0.067409 -1.157181 0.401973 # 2013-01-04 0.551363 -0.749296 0.343762 -1.558969 # 2013-01-05 -0.799507 -1.343379 -0.006312 1.091014 # 2013-01-06 0.012188 -0.382384 0.280008 -2.333430 # a b c d # 2013-02-01 1.588442 1.548420 0.132539 0.410512 # 2013-02-02 0.200415 1.515354 2.275575 -1.533603 # 2013-02-03 0.838294 0.067409 -1.157181 0.401973 # 2013-02-04 0.551363 -0.749296 0.343762 -1.558969 # 2013-02-05 -0.799507 -1.343379 -0.006312 1.091014 # 2013-02-06 0.012188 -0.382384 0.280008 -2.333430 # A B C D # 2013-03-01 1.588442 1.548420 0.132539 0.410512 # 2013-03-02 0.200415 1.515354 2.275575 -1.533603 # 2013-03-03 0.838294 0.067409 -1.157181 0.401973 # 2013-03-04 0.551363 -0.749296 0.343762 -1.558969 # 2013-03-05 -0.799507 -1.343379 -0.006312 1.091014 # 2013-03-06 0.012188 -0.382384 0.280008 -2.333430
能够指定某一列为index
import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), columns=list('ABCD')) df['date'] = dates print(df) df = df.set_index('date', drop=True) print(df) # output: # A B C D date # 0 0.910416 -0.378195 0.332562 -0.194766 2013-01-01 # 1 0.533733 0.888629 -0.358143 1.583278 2013-01-02 # 2 0.482362 -0.905558 1.045753 -0.874653 2013-01-03 # 3 0.901622 -0.535862 -0.439763 -0.640594 2013-01-04 # 4 -1.273577 -0.746785 1.448309 -0.368285 2013-01-05 # 5 0.191289 -1.246213 0.184757 -1.143074 2013-01-06 # A B C D # date # 2013-01-01 0.910416 -0.378195 0.332562 -0.194766 # 2013-01-02 0.533733 0.888629 -0.358143 1.583278 # 2013-01-03 0.482362 -0.905558 1.045753 -0.874653 # 2013-01-04 0.901622 -0.535862 -0.439763 -0.640594 # 2013-01-05 -1.273577 -0.746785 1.448309 -0.368285 # 2013-01-06 0.191289 -1.246213 0.184757 -1.143074
在原有DataFrame的基础上,能够建立一个新的DataFrame,或者将原有DataFrame按行进行汇总统计建立一个新的DataFrame。
import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC')) print(df) df1 = pd.DataFrame() df1['min'] = df.min() df1['max'] = df.max() df1['std'] = df.std() print(df1) df['min'] = df.min(axis=1) df['max'] = df.max(axis=1) df['std'] = df.std(axis=1) print(df) # output: # A B C # 2013-01-01 0.901073 1.706925 -0.503194 # 2013-01-02 0.379870 0.729674 0.579337 # 2013-01-03 -1.285323 -0.665951 -0.161148 # 2013-01-04 -0.714282 0.423376 0.586061 # 2013-01-05 -0.895171 -0.413328 0.485803 # 2013-01-06 1.926472 -0.718467 1.113522 # min max std # A -1.285323 1.926472 1.234084 # B -0.718467 1.706925 0.955797 # C -0.503194 1.113522 0.582913 # A B C min max std # 2013-01-01 0.901073 1.706925 -0.503194 -0.503194 1.706925 1.113132 # 2013-01-02 0.379870 0.729674 0.579337 0.379870 0.729674 0.175247 # 2013-01-03 -1.285323 -0.665951 -0.161148 -1.285323 -0.161148 0.562671 # 2013-01-04 -0.714282 0.423376 0.586061 -0.714282 0.586061 0.685749 # 2013-01-05 -0.895171 -0.413328 0.485803 -0.895171 0.485803 0.696763 # 2013-01-06 1.926472 -0.718467 1.113522 -0.718467 1.926472 1.341957
axis=0,对DataFrame的每一列数据进行统计运算,获得一行。axis=0,对DataFrame的每一行数据进行统计运算,获得一列。
DataFrame能够修改index和columns。
import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC')) print(df) df = df.rename(index=lambda x: x + 5, columns={'A': 'newA', 'B': 'newB'}) print(df) # output: # A B C # 2013-01-01 0.834910 0.652175 0.537611 # 2013-01-02 1.083902 0.836208 -1.466876 # 2013-01-03 -0.044256 0.932547 1.843682 # 2013-01-04 1.610113 -0.705734 -0.145042 # 2013-01-05 1.114897 0.273569 -0.047725 # 2013-01-06 -0.541942 -0.112752 1.644338 # newA newB C # 2013-01-06 0.834910 0.652175 0.537611 # 2013-01-07 1.083902 0.836208 -1.466876 # 2013-01-08 -0.044256 0.932547 1.843682 # 2013-01-09 1.610113 -0.705734 -0.145042 # 2013-01-10 1.114897 0.273569 -0.047725 # 2013-01-11 -0.541942 -0.112752 1.644338
列数据的单位统一
import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df['D'] = [10000, 34000, 60000, 34000, 56000, 80000] print(df) for i in range(len(df['D'])): weight = float(df.iloc[i, 3]) / 10000 df.iloc[i, 3] = '{}万'.format(weight) print(df) # output: # A B C D # 2019-01-01 -0.889533 -0.411451 0.563969 10000 # 2019-01-02 -0.573239 0.264805 -0.058530 34000 # 2019-01-03 1.224993 -1.815338 -2.075301 60000 # 2019-01-04 0.266483 1.841926 -0.759681 34000 # 2019-01-05 -0.167595 0.432617 0.533577 56000 # 2019-01-06 -0.973877 0.700821 1.093101 80000 # A B C D # 2019-01-01 -0.889533 -0.411451 0.563969 1.0万 # 2019-01-02 -0.573239 0.264805 -0.058530 3.4万 # 2019-01-03 1.224993 -1.815338 -2.075301 6.0万 # 2019-01-04 0.266483 1.841926 -0.759681 3.4万 # 2019-01-05 -0.167595 0.432617 0.533577 5.6万 # 2019-01-06 -0.973877 0.700821 1.093101 8.0万
df.duplicated(self, subset=None, keep='first')
检查DataFrame是否有重复数据。
subset:子集,列标签或列标签的序列
keep:可选值为first,last,False,first表示保留第一个出现的值,last表示保留最后一个出现的值,False表示保留全部的值。df.drop_duplicates(self, subset=None, keep='first', inplace=False)
删除DataFrame的重复数据。
subset:子集,列标签或列标签的序列
keep:可选值为first,last,False,first表示保留第一个出现的值,last表示保留最后一个出现的值,False表示保留全部的值。
inplace:值为True表示修改源数据,值为False表示不修改源数据
import pandas as pd import numpy as np if __name__ == "__main__": data = [['Alex', np.nan, 80], ['Bob', 25, 90], ['Bob', 25, 90]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) # 使用bool过滤,取出重复的值 print(df[df.duplicated(keep=False)]) # 删除重复值,修改源数据 df.drop_duplicates(keep='last', inplace=True) print(df) # output: # Name Age Score # 0 Alex NaN 80 # 1 Bob 25.0 90 # 2 Bob 25.0 90 # Name Age Score # 1 Bob 25.0 90 # 2 Bob 25.0 90 # Name Age Score # 0 Alex NaN 80 # 2 Bob 25.0 90
异常值分为两种,一种是非法数据,如数字列的中间夹杂着一些汉字或者是符号;第二种是异常数据,异乎寻常的大数值或者是小数值。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np def swap(x): if type(x) == str: if x[-1] == '岁': x = int(x[:-1]) elif x[-1] == '分': x = int(x[:-1]) return x if __name__ == "__main__": data = [['Alex', np.nan, '89分'], ['Bob', '25岁', '90分'], ['Bob', '28岁', '90分']] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) df = df.applymap(swap) print(df) # output: # Name Age Score # 0 Alex NaN 89分 # 1 Bob 25岁 90分 # 2 Bob 28岁 90分 # Name Age Score # 0 Alex NaN 89 # 1 Bob 25.0 90 # 2 Bob 28.0 90
清除字段字符的先后空格df[‘city’]=df[‘city’].map(str.strip)
将字段进行大小写转换:df[‘city’]=df[‘city’].str.lower()
import pandas as pd import numpy as np if __name__ == "__main__": data = [['Alex', np.nan, 80], [' Bob ', 25, 90], [' Bob', 25, 90]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) # 清除字符串先后空格 print(df['Name'].map(str.strip)) # 大小写转换 print(df['Name'].str.lower()) # output: # Name Age Score # 0 Alex NaN 80 # 1 Bob 25.0 90 # 2 Bob 25.0 90 # 0 Alex # 1 Bob # 2 Bob # Name: Name, dtype: object # 0 alex # 1 bob # 2 bob # Name: Name, dtype: object
更改列的数据类型:df[‘price’].astype(‘int’)
df[‘city’].replace(‘sh’, ‘shanghai’) import pandas as pd import numpy as np if __name__ == "__main__": data = [['Alex', np.nan, 80], ['Bob', 25, 90], ['Bob', 25, 90]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df['Name'].replace('Bob', 'Bauer')) # output: # Name Age Score # 0 Alex NaN 80 # 1 Bob 25.0 90 # 2 Bob 25.0 90 # 0 Alex # 1 Bauer # 2 Bauer # Name: Name, dtype: object
替换时,字符串先后不能有空格存在,必须严格匹配。
(1)按标签排序
sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)
使用sort_index()函数,经过传递axis参数和排序顺序,能够对DataFrame进行排序。 默认状况下,按照升序对行标签进行排序。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col1', 'col2', 'col3']) print(df) df = df.sort_index() print(df) # output: # col1 col2 col3 # rank2 -0.627700 -0.361006 -1.126366 # rank1 -1.997538 1.569461 0.454773 # rank4 -0.598688 1.348594 0.777791 # rank3 -0.190794 -1.209312 0.830699 # col1 col2 col3 # rank1 -1.997538 1.569461 0.454773 # rank2 -0.627700 -0.361006 -1.126366 # rank3 -0.190794 -1.209312 0.830699 # rank4 -0.598688 1.348594 0.777791
经过将布尔值传递给升序参数ascending,能够控制排序顺序;经过传递axis参数值为1,能够对列标签进行排序。 默认状况下,axis = 0,对行标签进行排序。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) # 按列标签进行排序 df = df.sort_index(ascending=True, axis=1) print(df) # output: # col3 col2 col1 # rank2 -0.715319 -0.245760 -1.282737 # rank1 0.046705 -0.202133 0.185576 # rank4 -1.608270 -0.491281 0.047686 # rank3 -1.013456 -0.020197 1.184151 # col1 col2 col3 # rank2 -1.282737 -0.245760 -0.715319 # rank1 0.185576 -0.202133 0.046705 # rank4 0.047686 -0.491281 -1.608270 # rank3 1.184151 -0.020197 -1.013456
(2)按值排序
sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
使用sort_values函数能够按值排序,接收一个by参数,使用DataFrame的列名称做为值,根据某列进行排序。by能够是列名称的列表。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) df = df.sort_values(by="col2") print(df) # output: # col3 col2 col1 # rank2 -0.706054 -2.135880 1.066836 # rank1 0.290660 -2.214451 -1.724394 # rank4 1.211874 0.475177 -0.711855 # rank3 -0.253331 1.211301 -0.208633 # col3 col2 col1 # rank1 0.290660 -2.214451 -1.724394 # rank2 -0.706054 -2.135880 1.066836 # rank4 1.211874 0.475177 -0.711855 # rank3 -0.253331 1.211301 -0.208633
sort_values()提供mergesort,heapsort和quicksort三种排序算法,mergesort是惟一的稳定排序算法,经过参数kind进行传递。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) df = df.sort_values(by="col2", kind='mergesort') print(df) # output: # col3 col2 col1 # rank2 -0.243768 -0.344846 0.535481 # rank1 -1.491950 0.690749 -2.023808 # rank4 -0.656292 -0.704788 0.655129 # rank3 0.468007 -0.250702 0.079670 # col3 col2 col1 # rank4 -0.656292 -0.704788 0.655129 # rank2 -0.243768 -0.344846 0.535481 # rank3 0.468007 -0.250702 0.079670 # rank1 -1.491950 0.690749 -2.023808
按顺序进行多列降序排序
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) df = df.sort_values(by=['col1', 'col3'], ascending=True, axis=0) print(df) # output: # col3 col2 col1 # rank2 1.035965 1.048124 -0.341586 # rank1 2.391899 -1.575462 0.616940 # rank4 0.968523 -0.932288 -0.553498 # rank3 0.585521 1.907344 -0.264500 # col3 col2 col1 # rank4 0.968523 -0.932288 -0.553498 # rank2 1.035965 1.048124 -0.341586 # rank3 0.585521 1.907344 -0.264500 # rank1 2.391899 -1.575462 0.616940
Pandas可使用groupby函数对DataFrame进行拆分,获得分组对象。
df.groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs)
by:分组方式,能够是字典、函数、标签、标签列表
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90], ['Jack', 26, 80]] df = pd.DataFrame(data, index=['a', 'b', 'c', 'd'], columns=['Name', 'Age', 'A']) print(df) group_obj1 = df.groupby('Name') print(group_obj1.groups) print('===================================') # 单层分组迭代 for key, data in group_obj1: print(key) print(data) group_obj2 = df.groupby(['Name', 'A']) # 分组信息查看 print(group_obj2.groups) print('===================================') # 多层分组迭代 for key, data in group_obj2: print(key) print(data) # output: # Name Age A # a Alex 24 80 # b Bob 25 90 # c Bauer 25 90 # d Jack 26 80 # {'Alex': Index(['a'], dtype='object'), 'Bauer': Index(['c'], dtype='object'), 'Bob': Index(['b'], dtype='object'), 'Jack': Index(['d'], dtype='object')} # =================================== # Alex # Name Age A # a Alex 24 80 # Bauer # Name Age A # c Bauer 25 90 # Bob # Name Age A # b Bob 25 90 # Jack # Name Age A # d Jack 26 80 # {('Alex', 80): Index(['a'], dtype='object'), ('Bauer', 90): Index(['c'], dtype='object'), ('Bob', 90): Index(['b'], dtype='object'), ('Jack', 80): Index(['d'], dtype='object')} # =================================== # ('Alex', 80) # Name Age A # a Alex 24 80 # ('Bauer', 90) # Name Age A # c Bauer 25 90 # ('Bob', 90) # Name Age A # b Bob 25 90 # ('Jack', 80) # Name Age A # d Jack 26 80
filter()函数能够用于过滤数据。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data = [['Alex', 24, 80], ['Bob', 25, 92], ['Bauer', 25, 90], ['Jack', 26, 80]] df = pd.DataFrame(data, index=['a', 'b', 'c', 'd'], columns=['Name', 'Age', 'A']) print(df) group_obj1 = df.groupby('Age') print(group_obj1.groups) # 过滤年龄相同的人 group = group_obj1.filter(lambda x: len(x) > 1) print(group) # output: # Name Age A # a Alex 24 80 # b Bob 25 92 # c Bauer 25 90 # d Jack 26 80 # {24: Index(['a'], dtype='object'), 25: Index(['b', 'c'], dtype='object'), 26: Index(['d'], dtype='object')} # Name Age A # b Bob 25 92 # c Bauer 25 90
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True)
合并两个DataFrame对象。
left ,左DataFrame对象。
right,右DataFrame对象。
on,列(名称)链接,必须在左DataFrame和右DataFrame对象中存在(找到)。
left_on,左侧DataFrame中的列用做键,能够是列名或长度等于DataFrame长度的数组。
right_on,来自右DataFrame的列做为键,能够是列名或长度等于DataFrame长度的数组。
left_index,若是为True,则使用左侧DataFrame中的索引(行标签)做为其链接键。 在具备MultiIndex(分层)的DataFrame的状况下,级别的数量必须与来自右DataFrame的链接键的数量相匹配。
right_index ,与右DataFrame的left_index具备相同的用法。
how,可选值为left, right, outer,inner,默认为inner。
sort,按照字典顺序经过链接键对结果DataFrame进行排序。默认为True,设置为False时,能够大大提升性能。
在一个键上合并两个DataFrame的示例以下:
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['Name', 'Age', 'A']) data2 = [['Alex', 87, 78], ['Bob', 67, 87], ['Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='Name') print(df) # output: # Name Age A # 0 Alex 24 80 # 1 Bob 25 90 # 2 Bauer 25 90 # ================================== # Name B C # 0 Alex 87 78 # 1 Bob 67 87 # 2 Bauer 98 78 # ================================== # Name Age A B C # 0 Alex 24 80 87 78 # 1 Bob 25 90 67 87 # 2 Bauer 25 90 98 78
合并多个键上的两个DataFrame的示例以下:
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on=['ID', 'Name']) print(df) # output: # ID Name Age A # 0 1 Alex 24 80 # 1 2 Bob 25 90 # 2 3 Bauer 25 90 # ================================== # ID Name B C # 0 1 Alex 87 78 # 1 4 Bob 67 87 # 2 3 Bauer 98 78 # ================================== # ID Name Age A B C # 0 1 Alex 24 80 87 78 # 1 3 Bauer 25 90 98 78
使用“how”参数进行合并,如何合并参数指定如何肯定哪些键将被包含在结果表中。若是组合键没有出如今左侧或右侧表中,则链接表中的值将为NA。
left:LEFT OUTER JOIN,使用左侧对象的键。
right:RIGHT OUTER JOIN,使用右侧对象的键。
outer:FULL OUTER JOIN,使用键的联合。
inner:INNER JOIN,使用键的交集。
Left Join示例:
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='left') print(df) # output: # ID Name Age A # 0 1 Alex 24 80 # 1 2 Bob 25 90 # 2 3 Bauer 25 90 # ================================== # ID Name B C # 0 1 Alex 87 78 # 1 4 Bob 67 87 # 2 3 Bauer 98 78 # ================================== # ID Name_x Age A Name_y B C # 0 1 Alex 24 80 Alex 87.0 78.0 # 1 2 Bob 25 90 NaN NaN NaN # 2 3 Bauer 25 90 Bauer 98.0 78.0
Right Join示例:
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='right') print(df) # output: # ID Name Age A # 0 1 Alex 24 80 # 1 2 Bob 25 90 # 2 3 Bauer 25 90 # ================================== # ID Name B C # 0 1 Alex 87 78 # 1 4 Bob 67 87 # 2 3 Bauer 98 78 # ================================== # ID Name_x Age A Name_y B C # 0 1 Alex 24.0 80.0 Alex 87 78 # 1 3 Bauer 25.0 90.0 Bauer 98 78 # 2 4 NaN NaN NaN Bob 67 87
Outer Join示例:
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='outer') print(df) # output: # ID Name Age A # 0 1 Alex 24 80 # 1 2 Bob 25 90 # 2 3 Bauer 25 90 # ================================== # ID Name B C # 0 1 Alex 87 78 # 1 4 Bob 67 87 # 2 3 Bauer 98 78 # ================================== # ID Name_x Age A Name_y B C # 0 1 Alex 24.0 80.0 Alex 87.0 78.0 # 1 2 Bob 25.0 90.0 NaN NaN NaN # 2 3 Bauer 25.0 90.0 Bauer 98.0 78.0 # 3 4 NaN NaN NaN Bob 67.0 87.0
Inner Join示例:
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='inner') print(df) # output: # ID Name Age A # 0 1 Alex 24 80 # 1 2 Bob 25 90 # 2 3 Bauer 25 90 # ================================== # ID Name B C # 0 1 Alex 87 78 # 1 4 Bob 67 87 # 2 3 Bauer 98 78 # ================================== # ID Name_x Age A Name_y B C # 0 1 Alex 24 80 Alex 87 78 # 1 3 Bauer 25 90 Bauer 98 78
concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True)
沿某个轴进行级联操做。
objs,Series、DataFrame或Panel对象的序列或字典。
axis,{0,1,...},默认为0,axis=0表示按index进行级联,axis=1表示按columns进行级联。
join,{'inner', 'outer'},默认inner,指示如何处理其它轴上的索引。
ignore_index,布尔值,默认为False。若是指定为True,则不使用链接轴上的索引值。结果轴将被标记为:0,...,n-1。
join_axes ,Index对象的列表。用于其它(n-1)轴的特定索引,而不是执行内部/外部集逻辑。
sort:是否进行排序,True会进行排序,False不进行排序。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90]] one = pd.DataFrame(data1, columns=['Name', 'Age', 'A']) data2 = [['Alex', 87, 78], ['Bob', 67, 87], ['Bauer', 98, 78]] two = pd.DataFrame(data2, columns=['Name', 'B', 'C']) print(one) print('==================================') print(two) print('==================================') df = pd.concat([one, two], axis=1, sort=False) print(df) # output: # Name Age A # 0 Alex 24 80 # 1 Bob 25 90 # 2 Bauer 25 90 # ================================== # Name B C # 0 Alex 87 78 # 1 Bob 67 87 # 2 Bauer 98 78 # ================================== # Name Age A Name B C # 0 Alex 24 80 Alex 87 78 # 1 Bob 25 90 Bob 67 87 # 2 Bauer 25 90 Bauer 98 78
当结果的索引是重复的,若是想要生成的对象必须遵循本身的索引,须要将ignore_index设置为True。
Pandas提供了链接DataFrame的append方法,沿axis=0链接。
df.append(self, other, ignore_index=False, verify_integrity=False, sort=None)
向DataFrame对象中添加新的行,若是添加的列名不在DataFrame对象中,将会被看成新的列进行添加。
other:DataFrame、series、dict、list
ignore_index:默认值为False,若是为True则不使用index标签。
verify_integrity :默认值为False,若是为True当建立相同的index时会抛出ValueError的异常。
sort:boolean,默认是None。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90]] one = pd.DataFrame(data1, columns=['Name', 'Age', 'A']) data2 = [['Alex', 87, 78], ['Bob', 67, 87], ['Bauer', 98, 78]] two = pd.DataFrame(data2, columns=['Name', 'B', 'C']) print(one) print('==================================') print(two) print('==================================') df = one.append(two, sort=False) print(df) # output: # Name Age A # 0 Alex 24 80 # 1 Bob 25 90 # 2 Bauer 25 90 # ================================== # Name B C # 0 Alex 87 78 # 1 Bob 67 87 # 2 Bauer 98 78 # ================================== # Name Age A B C # 0 Alex 24.0 80.0 NaN NaN # 1 Bob 25.0 90.0 NaN NaN # 2 Bauer 25.0 90.0 NaN NaN # 0 Alex NaN NaN 87.0 78.0 # 1 Bob NaN NaN 67.0 87.0 # 2 Bauer NaN NaN 98.0 78.0
Pandas提供了链接DataFrame的join方法,沿axis=1链接,用于将两个DataFrame中的不一样的列索引合并成为一个DataFrame。
df.join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False)
join方法提供SQL的Join操做,默认为为左外链接how=left。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90],['Jack', 26, 80]] one = pd.DataFrame(data1, index=['a', 'b', 'c', 'd'], columns=['Name', 'Age', 'A']) data2 = [[87, 78], [67, 87], [98, 78]] two = pd.DataFrame(data2, index=['a', 'b', 'c'], columns=['B', 'C']) print(one) print('==================================') print(two) print('==================================') df = one.join(two) print(df) # output: # Name Age A # a Alex 24 80 # b Bob 25 90 # c Bauer 25 90 # d Jack 26 80 # ================================== # B C # a 87 78 # b 67 87 # c 98 78 # ================================== # Name Age A B C # a Alex 24 80 87.0 78.0 # b Bob 25 90 67.0 87.0 # c Bauer 25 90 98.0 78.0 # d Jack 26 80 NaN NaN
迭代DataFrame提供列名。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) for col in df: print(col, end=' ') # output: # A B C D # 2019-01-01 -0.415754 -1.214340 -0.103952 1.232414 # 2019-01-02 -0.367888 0.257199 -1.615029 -0.335322 # 2019-01-03 0.552697 0.202993 -1.000219 -0.530897 # 2019-01-04 0.503410 -1.610091 1.660362 0.649700 # 2019-01-05 0.575416 -1.962578 -1.681379 -0.425239 # 2019-01-06 1.075917 -0.499081 1.886878 -0.073895 # A B C D
df.iteritems()用于迭代(key,value)对,将每一个列标签做为key,value为Series对象。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) for key, value in df.iteritems(): print(key, value) # output: # A B C D # 2019-01-01 -0.302021 1.343811 -0.070351 -0.409479 # 2019-01-02 -0.365564 0.743572 -0.475075 1.026054 # 2019-01-03 0.025748 1.395340 -0.987686 0.141003 # 2019-01-04 -0.291348 -1.173600 -2.286905 0.528416 # 2019-01-05 -1.844523 -0.052567 0.575980 0.260001 # 2019-01-06 0.271046 -0.583334 -0.596251 0.772095 # A 2019-01-01 -0.302021 # 2019-01-02 -0.365564 # 2019-01-03 0.025748 # 2019-01-04 -0.291348 # 2019-01-05 -1.844523 # 2019-01-06 0.271046 # Freq: D, Name: A, dtype: float64 # B 2019-01-01 1.343811 # 2019-01-02 0.743572 # 2019-01-03 1.395340 # 2019-01-04 -1.173600 # 2019-01-05 -0.052567 # 2019-01-06 -0.583334 # Freq: D, Name: B, dtype: float64 # C 2019-01-01 -0.070351 # 2019-01-02 -0.475075 # 2019-01-03 -0.987686 # 2019-01-04 -2.286905 # 2019-01-05 0.575980 # 2019-01-06 -0.596251 # Freq: D, Name: C, dtype: float64 # D 2019-01-01 -0.409479 # 2019-01-02 1.026054 # 2019-01-03 0.141003 # 2019-01-04 0.528416 # 2019-01-05 0.260001 # 2019-01-06 0.772095 # Freq: D, Name: D, dtype: float64
df.iterrows()用于返回迭代器,产生每一个index以及包含每行数据的Series。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(6, 4), columns=list('ABCD')) print(df) for index, value in df.iterrows(): print(index, value) # output: # A B C D # 0 -1.097851 0.785749 -1.727198 -1.120925 # 1 -1.420429 0.094384 -1.566202 0.237084 # 2 -0.761957 0.552395 0.680884 -0.290955 # 3 0.357713 -0.323331 1.438013 -1.334616 # 4 0.015467 -2.431556 -0.717285 -0.094409 # 5 -1.198224 -1.370170 0.201725 0.258093 # 0 A -1.097851 # B 0.785749 # C -1.727198 # D -1.120925 # Name: 0, dtype: float64 # 1 A -1.420429 # B 0.094384 # C -1.566202 # D 0.237084 # Name: 1, dtype: float64 # 2 A -0.761957 # B 0.552395 # C 0.680884 # D -0.290955 # Name: 2, dtype: float64 # 3 A 0.357713 # B -0.323331 # C 1.438013 # D -1.334616 # Name: 3, dtype: float64 # 4 A 0.015467 # B -2.431556 # C -0.717285 # D -0.094409 # Name: 4, dtype: float64 # 5 A -1.198224 # B -1.370170 # C 0.201725 # D 0.258093 # Name: 5, dtype: float64
df.itertuples()方法将为DataFrame中的每一行返回一个产生一个命名元组的迭代器。元组的第一个元素是行的index,而剩余的值是行值。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(6, 4), columns=list('ABCD')) print(df) for row in df.itertuples(): print(row) # output: # A B C D # 0 0.681324 1.047734 -1.909570 -0.845900 # 1 -0.879077 -0.897085 -0.795461 -0.634519 # 2 0.484502 -0.061608 0.605827 -0.321721 # 3 -0.051974 1.533112 -1.011544 -0.922280 # 4 -0.634157 -0.173692 1.228584 -1.229581 # 5 0.236769 -0.933609 0.111948 1.048215 # Pandas(Index=0, A=0.6813238552921729, B=1.0477343302788706, C=-1.909570436815022, D=-0.8459001766064564) # Pandas(Index=1, A=-0.8790771200969485, B=-0.8970849190216943, C=-0.7954606477323869, D=-0.6345188867416923) # Pandas(Index=2, A=0.48450157948338324, B=-0.061608014575315506, C=0.6058267522125123, D=-0.32172144100965605) # Pandas(Index=3, A=-0.05197447447575398, B=1.5331115391025778, C=-1.0115444345763995, D=-0.9222798204619236) # Pandas(Index=4, A=-0.6341570074338677, B=-0.173692444412635, C=1.2285839004083785, D=-1.2295807166909738) # Pandas(Index=5, A=0.23676890089548117, B=-0.9336090868233837, C=0.11194794444517034, D=1.0482154173833818)
迭代用于读取,迭代器返回原始对象(视图)的副本,所以迭代时更改将不会反映在原始对象上。
在SQL中,SELECT使用逗号分隔的列列表(或选择全部列)来完成。SELECT ID, Name FROM tablename LIMIT 5;
在Pandas中,列选择经过传递列名到DataFrame。df[['ID', 'Name']].head(5)
SELECT操做示例:
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] df = pd.DataFrame(data, columns=['ID', 'Name', 'Age', 'A']) print(df) print(df[['ID', 'Name']].head(5)) # output: # ID Name Age A # 0 1 Alex 24 80 # 1 2 Bob 25 90 # 2 3 Bauer 25 90 # ID Name # 0 1 Alex # 1 2 Bob # 2 3 Bauer
在SQL中,使用WHERE进行条件过滤。SELECT * FROM tablename WHERE Name = 'Bauer' LIMIT 5;
在Pandas中,一般使用布尔索引进行过滤。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": data = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] df = pd.DataFrame(data, columns=['ID', 'Name', 'Age', 'A']) print(df) print('===========================') print(df[df['Name'] == 'Bauer'].head(5)) # output: # ID Name Age A # 0 1 Alex 24 80 # 1 2 Bob 25 90 # 2 3 Bauer 25 90 # =========================== # ID Name Age A # 2 3 Bauer 25 90
(1)sum
返回所请求轴的值的总和。 默认状况下,轴为索引(axis=0)。
import pandas as pd if __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.sum()) print(df.sum(1)) # output: # Name Age Score # 0 Alex 25 80 # 1 Bob 26 90 # 2 Bauer 24 87 # Name AlexBobBauer # Age 75 # Score 257 # dtype: object # 0 105 # 1 116 # 2 111 # dtype: int64
(2)mean
返回平均值。
import pandas as pd if __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.mean()) # output: # Name Age Score # 0 Alex 25 80 # 1 Bob 26 90 # 2 Bauer 24 87 # Age 25.000000 # Score 85.666667 # dtype: float64
(3)std
返回数字列的Bressel标准误差。
import pandas as pd if __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.std()) # output: # Name Age Score # 0 Alex 25 80 # 1 Bob 26 90 # 2 Bauer 24 87 # Age 1.000000 # Score 5.131601 # dtype: float64
(4)median
求全部值的中位数。
import pandas as pd if __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.median()) # output: # Name Age Score # 0 Alex 25 80 # 1 Bob 26 90 # 2 Bauer 24 87 # Age 25.0 # Score 87.0 # dtype: float64
(5)min
求全部值中的最小值。
import pandas as pd if __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.min()) # output: # Name Age Score # 0 Alex 25 80 # 1 Bob 26 90 # 2 Bauer 24 87 # Name Alex # Age 24 # Score 80 # dtype: object
(6)max
求全部值中的最大值。
import pandas as pd if __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.max()) # output: # Name Age Score # 0 Alex 25 80 # 1 Bob 26 90 # 2 Bauer 24 87 # Name Bob # Age 26 # Score 90 # dtype: object
(7)describe
汇总有关DataFrame列的统计信息的摘要。def describe(self, percentiles=None, include=None, exclude=None)
include用于传递关于什么列须要考虑用于总结的必要信息的参数。获取值列表,默认状况下是number 。
object - 汇总字符串列
number - 汇总数字列
all - 将全部列汇总在一块儿(不该将其做为列表值传递)
import pandas as pd if __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.describe(include="all")) # output: # Name Age Score # 0 Alex 25 80 # 1 Bob 26 90 # 2 Bauer 24 87 # Name Age Score # count 3 3.0 3.000000 # unique 3 NaN NaN # top Alex NaN NaN # freq 1 NaN NaN # mean NaN 25.0 85.666667 # std NaN 1.0 5.131601 # min NaN 24.0 80.000000 # 25% NaN 24.5 83.500000 # 50% NaN 25.0 87.000000 # 75% NaN 25.5 88.500000 # max NaN 26.0 90.000000
abs:求全部值的绝对值
prod:求全部值的乘积
cumsum:累计总和
cumprod:累计乘积
Series,DatFrames和Panel都有pct_change()函数,用于将每一个元素与其前一个元素进行比较,并计算变化百分比。默认状况下,pct_change()对列进行操做; 若是想应用到行上,那么可以使用axis = 1参数。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) print(df.pct_change()) # output: # col3 col2 col1 # rank2 0.988739 2.062798 1.400892 # rank1 0.394663 -0.988307 1.583098 # rank4 -0.768109 -0.163727 -1.801323 # rank3 0.999816 -1.224068 1.470020 # col3 col2 col1 # rank2 NaN NaN NaN # rank1 -0.600842 -1.479110 0.130064 # rank4 -2.946241 -0.834336 -2.137846 # rank3 -2.301659 6.476294 -1.816078
协方差适用于Series数据,Series对象有一个方法cov用来计算Series对象之间的协方差,NA将被自动排除。当应用于DataFrame对象时,协方差方法计算全部列之间的协方差(cov)值。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(3, 5), columns=['a', 'b', 'c', 'd', 'e']) print(df) print(df['a'].cov(df['b'])) print(df.cov()) # output: # a b c d e # 0 1.168443 -0.343905 2.254448 0.269765 -0.928009 # 1 0.542551 -1.303205 -1.767313 -0.349884 -0.352578 # 2 -2.028410 -1.176339 0.156047 1.426468 -1.338805 # 0.48923631972868176 # a b c d e # a 2.870241 0.489236 0.713430 -1.312818 0.581441 # b 0.489236 0.271550 0.974811 -0.023849 -0.055862 # c 0.713430 0.974811 4.046193 0.580236 -0.558184 # d -1.312818 -0.023849 0.580236 0.812892 -0.430603 # e 0.581441 -0.055862 -0.558184 -0.430603 0.245420
相关性显示了任何两个数值(Series)之间的线性关系。有多种计算相关性的方法,如pearson(默认),spearman和kendall。若是DataFrame中存在任何非数字列,则会自动排除。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": df = pd.DataFrame(np.random.randn(3, 5), columns=['a', 'b', 'c', 'd', 'e']) print(df) print(df['a'].corr(df['b'])) print(df.corr()) # output: # a b c d e # 0 -2.110756 0.693665 0.405701 -0.628349 -1.062029 # 1 -1.331364 1.283434 1.619166 -0.025866 1.742287 # 2 -1.159944 0.435840 -0.251710 -0.347102 -0.026825 # 0.052396578025987336 # a b c d e # a 1.000000 0.052397 -0.000006 0.743940 0.664845 # b 0.052397 1.000000 0.998626 0.706309 0.780790 # c -0.000006 0.998626 1.000000 0.668242 0.746977 # d 0.743940 0.706309 0.668242 1.000000 0.993772 # e 0.664845 0.780790 0.746977 0.993772 1.000000
数据排名为元素数组中的每一个元素生成排名。在关系的状况下,分配平均等级。
# -*- coding=utf-8 -*- import pandas as pd import numpy as np if __name__ == "__main__": s = pd.Series(np.random.randn(5), index=list('abcde')) print(s) s['a'] = s['c'] print(s.rank()) # output: # a 1.597684 # a 1.597684 # b 1.107413 # c -0.298296 # d -0.281076 # e -0.667954 # dtype: float64 # a 2.5 # b 5.0 # c 2.5 # d 4.0 # e 1.0 # dtype: float64
rank使用一个默认为True的升序参数; False时,数据被反向排序,较大的值被分配较小的排序。