自动登陆博客园以后台验证码

验证码

#破解博客园后台登陆
from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait from PIL import Image import time def get_snap(): driver.save_screenshot('full_snap.png') page_snap_obj=Image.open('full_snap.png') return page_snap_obj def get_image(): img=driver.find_element_by_class_name('geetest_canvas_img') time.sleep(2) location=img.location size=img.size left=location['x'] top=location['y'] right=left+size['width'] bottom=top+size['height'] page_snap_obj=get_snap() image_obj=page_snap_obj.crop((left,top,right,bottom)) # image_obj.show()
    return image_obj def get_distance(image1,image2): start=57 threhold=60

    for i in range(start,image1.size[0]): for j in range(image1.size[1]): rgb1=image1.load()[i,j] rgb2=image2.load()[i,j] res1=abs(rgb1[0]-rgb2[0]) res2=abs(rgb1[1]-rgb2[1]) res3=abs(rgb1[2]-rgb2[2]) # print(res1,res2,res3)
            if not (res1 < threhold and res2 < threhold and res3 < threhold): return i-7
    return i-7

def get_tracks(distance): distance+=20 #先滑过一点,最后再反着滑动回来
    v=0 t=0.2 forward_tracks=[] current=0 mid=distance*3/5
    while current < distance: if current < mid: a=2
        else: a=-3 s=v*t+0.5*a*(t**2) v=v+a*t current+=s forward_tracks.append(round(s)) #反着滑动到准确位置
    back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20

    return {'forward_tracks':forward_tracks,'back_tracks':back_tracks} try: # 一、输入帐号密码回车
    driver = webdriver.Chrome() driver.implicitly_wait(3) driver.get('https://passport.cnblogs.com/user/signin') username = driver.find_element_by_id('input1') pwd = driver.find_element_by_id('input2') signin = driver.find_element_by_id('signin') username.send_keys('******')  #用户名
    pwd.send_keys('******')    #密码
 signin.click() # 二、点击按钮,获得没有缺口的图片
    button = driver.find_element_by_class_name('geetest_radar_tip') button.click() # 三、获取没有缺口的图片
    image1 = get_image() # 四、点击滑动按钮,获得有缺口的图片
    button = driver.find_element_by_class_name('geetest_slider_button') button.click() # 五、获取有缺口的图片
    image2 = get_image() # 六、对比两种图片的像素点,找出位移
    distance = get_distance(image1, image2) # 七、模拟人的行为习惯,根据总位移获得行为轨迹
    tracks = get_tracks(distance) print(tracks) # 八、按照行动轨迹先正向滑动,后反滑动
    button = driver.find_element_by_class_name('geetest_slider_button') ActionChains(driver).click_and_hold(button).perform() # 正常人类老是自信满满地开始正向滑动,自信地表现是疯狂加速
    for track in tracks['forward_tracks']: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,而后开始反向滑动
    time.sleep(0.5) for back_track in tracks['back_tracks']: ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform() # 小范围震荡一下,进一步迷惑极验后台,这一步能够极大地提升成功率
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform() # 成功后,骚包人类总喜欢默默地欣赏一下本身拼图的成果,而后依依不舍地松开那只脏手
    time.sleep(0.5) ActionChains(driver).release().perform() time.sleep(10)  # 睡时间长一点,肯定登陆成功
finally: driver.close()





#总结:测试了几下,感受就是验证码的位置是随机变化的,可是此码给出的信息倒是不变的,so,pass

再来:参考

###############优化后的代码(将功能封装成函数调用)#######
from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By #按照什么方式查找,By.ID,By.CSS_SELECTOR
from selenium.webdriver.common.keys import Keys #键盘按键操做
from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait #等待页面加载某些元素
from PIL import Image #pip3 install pillow

import time def get_snap(driver): driver.save_screenshot('snap.png')#截图
    snap_obj=Image.open('snap.png')#保存
    return snap_obj def get_image(driver): img=driver.find_element_by_class_name('geetest_canvas_img') time.sleep(2) #等待图片加载完毕
    size=img.size location=img.location #获取图片位置
    left=location['x'] top=location['y'] right=left+size['width'] bottom=top+size['height'] snap_obj=get_snap(driver) image_obj=snap_obj.crop((left,top,right,bottom))#截图操做
    # image_obj.show()
    return image_obj def get_distance(image1,image2): start_x=58#滑块最左侧
    threhold=60#去除伪影响
    # print(image1.size)
    # print(image2.size)
    for x in range(start_x,image1.size[0]): for y in range(image1.size[1]): rgb1=image1.load()[x,y] rgb2=image2.load()[x,y] res1=abs(rgb1[0]-rgb2[0]) res2=abs(rgb1[1]-rgb2[1]) res3=abs(rgb1[2]-rgb2[2]) if not (res1 < threhold and res2 < threhold and res3 < threhold): return x-7#偏差范围

def get_tracks(distance): distance+=20#故意划过头20像素
    #v=v0+a*t
    #s=v*t+0.5*a*(t**2)
 v0=0 s=0 t=0.2 mid=distance*3/5 forward_tracks=[] while s < distance: if s < mid: a=2
        else: a=-3 v=v0 track=v*t+0.5*a*(t**2) track=round(track)#取整数
        v0=v+a*t s+=track forward_tracks.append(track) back_tracks=[-1,-1,-1,-2,-2,-2,-3,-3,-2,-2,-1] #20
    return {"forward_tracks":forward_tracks,'back_tracks':back_tracks} def crack(driver):#封装滑动的函数
    # 二、点击验证人机按钮,弹出没有缺口的图
    button = driver.find_element_by_class_name('geetest_radar_tip_content') button.click() # 三、针对没有缺口的图片进行截图
    image1 = get_image(driver) # 四、点击滑动按钮,弹出有缺口的图
    slider_button = driver.find_element_by_class_name('geetest_slider_button') slider_button.click() # 五、针对有缺口的图片进行截图
    image2 = get_image(driver) # 六、对比两张图片,找出缺口,即滑动的位移
    distance = get_distance(image1, image2) # print(distance)

    # 七、按照人的行为行为习惯,把总位移切成一段段小的位移
    traks_dic = get_tracks(distance) # 八、按照位移移动
    slider_button = driver.find_element_by_class_name('geetest_slider_button') ActionChains(driver).click_and_hold(slider_button).perform() # 按住不放手
    # 先向前移动
    forward_tracks = traks_dic["forward_tracks"] back_tracks = traks_dic["back_tracks"] for forward_track in forward_tracks: ActionChains(driver).move_by_offset(xoffset=forward_track, yoffset=0).perform() # 短暂停顿,发现傻逼,移过了
    time.sleep(0.2) # 先向后移动
    for back_track in back_tracks: ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform() # 抖一抖
    ActionChains(driver).move_by_offset(xoffset=-4, yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform() time.sleep(0.1) ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform() time.sleep(0.3) ActionChains(driver).release().perform() # 松开鼠标



def login_cnblogs(username,pwd): driver = webdriver.Chrome()  # 谷歌浏览器driver = webdriver.Chrome()#谷歌浏览器
    try: driver.get('https://passport.cnblogs.com/user/signin')#博客园
        driver.implicitly_wait(10)#隐形等待10秒

        #一、输入帐号、密码,而后点击登录
        input_user=driver.find_element_by_id('input1') input_pwd=driver.find_element_by_id('input2') login_button=driver.find_element_by_id('signin') input_user.send_keys(username)#输入帐号
        input_pwd.send_keys(pwd)#输入密码
        login_button.click()#点击登陆按钮
        # 调用 封装滑动的函数
 crack(driver) time.sleep(10) finally: driver.close() if __name__ == '__main__': login_cnblogs(username='脚本小孩',pwd='*****')

仍是出错,缘由在第4个def
def get_tracks(distance): distance+=20#故意划过头20像素
”  待解惑

 

 

继续啊

#首先要安装Pillow pip3 install pillow #Pillow:基于PIL,处理python 3.x的图形图像库.由于PIL只能处理到python 2.x,而这个模块能处理Python3.x,目前用它作图形的不少.

# 破解滑动验证码自动登陆博客园 ###########思路整理##########

from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By #按照什么方式查找,By.ID,By.CSS_SELECTOR
from selenium.webdriver.common.keys import Keys #键盘按键操做
from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait #等待页面加载某些元素
from PIL import Image #pip3 install pillow

import time def get_snap(driver): driver.save_screenshot('snap.png')#截图
    snap_obj=Image.open('snap.png')#保存
    return snap_obj def get_image(driver): img=driver.find_element_by_class_name('geetest_canvas_img') time.sleep(2) #等待图片加载完毕
    size=img.size location=img.location #获取图片位置
    left=location['x'] top=location['y'] right=left+size['width'] bottom=top+size['height'] snap_obj=get_snap(driver) image_obj=snap_obj.crop((left,top,right,bottom))#截图操做
    # image_obj.show()
    return image_obj def get_distance(image1,image2): start_x=58#滑块最左侧
    threhold=60#去除伪影响
    # print(image1.size)
    # print(image2.size)
    for x in range(start_x,image1.size[0]): for y in range(image1.size[1]): rgb1=image1.load()[x,y] rgb2=image2.load()[x,y] res1=abs(rgb1[0]-rgb2[0]) res2=abs(rgb1[1]-rgb2[1]) res3=abs(rgb1[2]-rgb2[2]) if not (res1 < threhold and res2 < threhold and res3 < threhold): return x-7#偏差范围

def get_tracks(distance): distance+=20#故意划过头20像素
    #v=v0+a*t
    #s=v*t+0.5*a*(t**2)
 v0=0 s=0 t=0.2 mid=distance*3/5 forward_tracks=[] while s < distance: if s < mid: a=2
        else: a=-3 v=v0 track=v*t+0.5*a*(t**2) track=round(track)#取整数
        v0=v+a*t s+=track forward_tracks.append(track) back_tracks=[-1,-1,-1,-2,-2,-2,-3,-3,-2,-2,-1] #20
    return {"forward_tracks":forward_tracks,'back_tracks':back_tracks} try: driver = webdriver.Chrome()#谷歌浏览器
    driver.get('https://passport.cnblogs.com/user/signin')#博客园
    driver.implicitly_wait(10)#隐形等待10秒

    #一、输入帐号、密码,而后点击登录
    input_user=driver.find_element_by_id('input1') input_pwd=driver.find_element_by_id('input2') login_button=driver.find_element_by_id('signin') input_user.send_keys('脚本小孩')#输入帐号
    input_pwd.send_keys('********')#输入密码
    login_button.click()#点击登陆按钮

    #二、点击验证人机按钮,弹出没有缺口的图
    button=driver.find_element_by_class_name('geetest_radar_tip_content') button.click() #三、针对没有缺口的图片进行截图
    image1=get_image(driver) #四、点击滑动按钮,弹出有缺口的图
    slider_button=driver.find_element_by_class_name('geetest_slider_button') slider_button.click() #五、针对有缺口的图片进行截图
    image2=get_image(driver) #六、对比两张图片,找出缺口,即滑动的位移
    distance=get_distance(image1,image2) # print(distance)

    #七、按照人的行为行为习惯,把总位移切成一段段小的位移
    traks_dic=get_tracks(distance) #八、按照位移移动
    slider_button=driver.find_element_by_class_name('geetest_slider_button') ActionChains(driver).click_and_hold(slider_button).perform()#按住不放手
    #先向前移动
    forward_tracks=traks_dic["forward_tracks"] back_tracks=traks_dic["back_tracks"] for forward_track in forward_tracks: ActionChains(driver).move_by_offset(xoffset=forward_track,yoffset=0).perform() #短暂停顿,发现傻逼,移过了
    time.sleep(0.2) # 先向后移动
    for back_track in back_tracks: ActionChains(driver).move_by_offset(xoffset=back_track,yoffset=0).perform() # 抖一抖
    ActionChains(driver).move_by_offset(xoffset=-4,yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=3,yoffset=0).perform() time.sleep(0.1) ActionChains(driver).move_by_offset(xoffset=-2,yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=3,yoffset=0).perform() time.sleep(0.3) ActionChains(driver).release().perform()#松开鼠标
 time.sleep(10) finally: driver.close()

 

补充:html

from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait from PIL import Image import time def get_snap(driver): driver.save_screenshot('full_snap.png') page_snap_obj=Image.open('full_snap.png') return page_snap_obj def get_image(driver): img=driver.find_element_by_class_name('geetest_canvas_img') time.sleep(2) location=img.location size=img.size left=location['x'] top=location['y'] right=left+size['width'] bottom=top+size['height'] page_snap_obj=get_snap(driver) image_obj=page_snap_obj.crop((left,top,right,bottom)) # image_obj.show()
    return image_obj def get_distance(image1,image2): start=57 threhold=60

    for i in range(start,image1.size[0]): for j in range(image1.size[1]): rgb1=image1.load()[i,j] rgb2=image2.load()[i,j] res1=abs(rgb1[0]-rgb2[0]) res2=abs(rgb1[1]-rgb2[1]) res3=abs(rgb1[2]-rgb2[2]) # print(res1,res2,res3)
            if not (res1 < threhold and res2 < threhold and res3 < threhold): return i-7
    return i-7

def get_tracks(distance): distance+=20 #先滑过一点,最后再反着滑动回来
    v=0 t=0.2 forward_tracks=[] current=0 mid=distance*3/5
    while current < distance: if current < mid: a=2
        else: a=-3 s=v*t+0.5*a*(t**2) v=v+a*t current+=s forward_tracks.append(round(s)) #反着滑动到准确位置
    back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20

    return {'forward_tracks':forward_tracks,'back_tracks':back_tracks} def crack(driver): #破解滑动认证
    # 一、点击按钮,获得没有缺口的图片
    button = driver.find_element_by_class_name('geetest_radar_tip') button.click() # 二、获取没有缺口的图片
    image1 = get_image(driver) # 三、点击滑动按钮,获得有缺口的图片
    button = driver.find_element_by_class_name('geetest_slider_button') button.click() # 四、获取有缺口的图片
    image2 = get_image(driver) # 五、对比两种图片的像素点,找出位移
    distance = get_distance(image1, image2) # 六、模拟人的行为习惯,根据总位移获得行为轨迹
    tracks = get_tracks(distance) print(tracks) # 七、按照行动轨迹先正向滑动,后反滑动
    button = driver.find_element_by_class_name('geetest_slider_button') ActionChains(driver).click_and_hold(button).perform() # 正常人类老是自信满满地开始正向滑动,自信地表现是疯狂加速
    for track in tracks['forward_tracks']: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,而后开始反向滑动
    time.sleep(0.5) for back_track in tracks['back_tracks']: ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform() # 小范围震荡一下,进一步迷惑极验后台,这一步能够极大地提升成功率
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform() # 成功后,骚包人类总喜欢默默地欣赏一下本身拼图的成果,而后依依不舍地松开那只脏手
    time.sleep(0.5) ActionChains(driver).release().perform() def login_cnblogs(username,password): driver = webdriver.Chrome() try: # 一、输入帐号密码回车
        driver.implicitly_wait(3) driver.get('https://passport.cnblogs.com/user/signin') input_username = driver.find_element_by_id('input1') input_pwd = driver.find_element_by_id('input2') signin = driver.find_element_by_id('signin') input_username.send_keys(username) input_pwd.send_keys(password) signin.click() # 二、破解滑动认证
 crack(driver) time.sleep(10)  # 睡时间长一点,肯定登陆成功
    finally: driver.close() if __name__ == '__main__': login_cnblogs(username='linhaifeng',password='xxxx') 修订版
修订版

 

参考网址:https://www.cnblogs.com/linhaifeng/articles/7802150.html#toppython

有一句话感触颇深,由于我也一直是这样认为的,好比说,,,数学,我一直都认为数学只是一种学习的工具
我学习数学不少时候只是想去作某件事,或者想去了解这件事的原理,想把他弄通透罢了程序员

 

那么网上的学习软件,或者编程也好,本质不变,可是当程序员的性质变了,目的不变,web

 

引用:编程

也就不修改说明说明了

ps:破解图片验证码的核心在于模拟人的行为, 自笔者在老男孩授课以来,上述的破解思路已经分享给不少人, 相应地网络上也已经有不少copy版, 极验后台的也在不断学习用户的破解行为, 但归根结底只要咱们将破解行为模拟地足够像人,极验就拿咱们没有办法,

上面引用的话也在说,核心在于模拟人的行为,那么计算机的本质是什么呢?不就是解法生产力。。。。解放思想嘛canvas

那么爬虫的本质是什么?????   浏览器

我以为如今我自学这些东西的目的在于什么??网络

或者说我想要达到什么高度。。。。。app

若是不知道,我想能够先放下了,想搞搞有目的有性质的东西——好比数学ide

相关文章
相关标签/搜索