数据结构中有数组和链表来实现对数据的存储,但这二者基本上是两个极端。java
数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特色是:寻址容易,插入和删除困难;算法
链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特色是:寻址困难,插入和删除容易。数组
那么咱们能不能综合二者的特性,作出一种寻址容易,插入删除也容易的数据结构?答案是确定的,这就是咱们要提起的哈希表。哈希表((Hash table)既知足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。数据结构
哈希表有多种不一样的实现方法,我接下来解释的是最经常使用的一种方法—— 拉链法,咱们能够理解为“链表的数组” ,如图:less
从上图咱们能够发现哈希表是由数组+链表组成的,一个长度为16的数组中,每一个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。通常状况是经过hash(key)%len得到,也就是元素的key的哈希值对数组长度取模获得。好比上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。因此十二、2八、108以及140都存储在数组下标为12的位置。函数
HashMap其实也是一个线性的数组实现的,因此能够理解为其存储数据的容器就是一个线性数组。这可能让咱们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有作一些处理。性能
首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value咱们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,咱们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。优化
/** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry[] table;
既然是线性数组,为何能随机存取?这里HashMap用了一个小算法,大体是这样实现:this
// 存储时: int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每一个key的hash是一个固定的int值 int index = hash % Entry[].length; Entry[index] = value; // 取值时: int hash = key.hashCode(); int index = hash % Entry[].length; return Entry[index];
疑问:若是两个key经过hash%Entry[].length获得的index相同,会不会有覆盖的危险?spa
这里HashMap里面用到链式数据结构的一个概念。上面咱们提到过Entry类里面有一个next属性,做用是指向下一个Entry。打个比方, 第一个键值对A进来,经过计算其key的hash获得的index=0,记作:Entry[0] = A。一会后又进来一个键值对B,经过计算其index也等于0,如今怎么办?HashMap会这样作:B.next = A,Entry[0] = B,若是又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样咱们发现index=0的地方其实存取了A,B,C三个键值对,他们经过next这个属性连接在一块儿。因此疑问不用担忧。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大体实现,咱们应该已经清楚了。
public V put(K key, V value) { if (key == null) return putForNullKey(value); //null老是放在数组的第一个链表中 int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); //遍历链表 for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; //若是key在链表中已存在,则替换为新value if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; } void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next //若是size超过threshold,则扩充table大小。再散列 if (size++ >= threshold) resize(2 * table.length); }
固然HashMap里面也包含一些优化方面的实现,这里也说一下。好比:Entry[]的长度必定后,随着map里面数据的愈来愈长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size愈来愈大,Entry[]会以必定的规则加长长度。
public V get(Object key) { if (key == null) return getForNullKey(); int hash = hash(key.hashCode()); //先定位到数组元素,再遍历该元素处的链表 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; }
null key老是存放在Entry[]数组的第一个元素。
private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } private V getForNullKey() { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; }
HashMap存取时,都须要计算当前key应该对应Entry[]数组哪一个元素,即计算数组下标;算法以下:
/** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); }
按位取并,做用上至关于取模mod或者取余%。
这意味着数组下标相同,并不表示hashCode相同。
public HashMap(int initialCapacity, float loadFactor) { ..... // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init(); }
注意table初始大小并非构造函数中的initialCapacity!!
而是 >= initialCapacity的2的n次幂!!!!
————为何这么设计呢?——
Java中hashmap的解决办法就是采用的链地址法。
当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,须要建立一张新表,将原表的映射到新表中。
/** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor); } /** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null) { src[j] = null; do { Entry<K,V> next = e.next; //从新计算index int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } }
转自:http://blog.csdn.net/vking_wang/article/details/14166593