摸清数据产生量如何,若是是1钞钟1条记录,则一台车一天就有86400条记录,则建议以下:java
一、每台车使用单独的表,程序内部使用CreateTable,动态建立表,销毁表。这样车与车之间不会产生联系。
前提:系统管理的车应该不会常常变来变去,没有不少关联查询出多台车轨迹的需求。程序员
二、创建当前表、历史表、统计表
当前表:仅存储当天的记录。表的个数为=车数量,记录条数小于10万条。
这样无论条数有多少,系统的插入等工做的正常运行不会受到任何影响。
历史表:有12个历史表,每一个表存储一个月的历史信息,也即最多保留一年的明细记录。表的个数=车数量 * 12
天天凌晨能够进行当前表的过时记录的转移、删除工做。这样每一个表的条数约250万条。使用好点的服务器,还免强能接受了。
统计表:将明细记录按必定的周期(如每半小时一条)进行压缩统计,存储进入统计表。供查询统计使用。
根据大家的具体需求,能够将数据按以上三种方法组合。如能够创建统计周期为分钟、10分钟、1小时、1天等等的各类表。
统计周期越短,保存的时期越短,查询得越清晰。也即查询时越靠近当前查询得越清晰。算法
=====================================================================================================================================数据库
1)数据库设计方面:
a. 对查询进行优化,应尽可能避免全表扫描,首先应考虑在 where 及 order by 涉及的列上创建索引。
b. 应尽可能避免在 where 子句中对字段进行 null 值判断,不然将致使引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 能够在num上设置默认值0,确保表中num列没有null值,而后这样查询: select id from t where num=0缓存
c. 并非全部索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即便在sex上建了索引也对查询效率起不了做用。服务器
d. 索引并非越多越好,索引当然能够提升相应的 select 的效率,但同时也下降了 insert 及 update 的效率,由于 insert 或 update 时有可能会重建索引,因此怎样建索引须要慎重考虑,视具体状况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。网络
e. 应尽量的避免更新索引数据列,由于索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将致使整个表记录的顺序的调整,会耗费至关大的资源。若应用系统须要频繁更新索引数据列,那么须要考虑是否应将该索引建为索引。并发
f. 尽可能使用数字型字段,若只含数值信息的字段尽可能不要设计为字符型,这会下降查询和链接的性能,并会增长存储开销。这是由于引擎在处理查询和链接时会逐个比较字符串中每个字符,而对于数字型而言只须要比较一次就够了。框架
g. 尽量的使用 varchar/nvarchar 代替 char/nchar ,由于首先变长字段存储空间小,能够节省存储空间,其次对于查询来讲,在一个相对较小的字段内搜索效率显然要高些。数据库设计
h. 尽可能使用表变量来代替临时表。若是表变量包含大量数据,请注意索引很是有限(只有主键索引)。
i. 避免频繁建立和删除临时表,以减小系统表资源的消耗。
j. 临时表并非不可以使用,适当地使用它们可使某些例程更有效,例如,当须要重复引用大型表或经常使用表中的某个数据集时。可是,对于一次性事件,最好使用导出表。
k. 在新建临时表时,若是一次性插入数据量很大,那么可使用 select into 代替 create table,避免形成大量 log ,以提升速度;若是数据量不大,为了缓和系统表的资源,应先create table,而后insert。
l. 若是使用到了临时表,在存储过程的最后务必将全部的临时表显式删除,先 truncate table ,而后 drop table ,这样能够避免系统表的较长时间锁定。
2)SQL语句方面:
a. 应尽可能避免在 where 子句中使用!=或<>操做符,不然将引擎放弃使用索引而进行全表扫描。
b. 应尽可能避免在 where 子句中使用 or 来链接条件,不然将致使引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
能够这样查询:
select id from t where num=10 union all select id from t where num=20
c. in 和 not in 也要慎用,不然会致使全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
d. 下面的查询也将致使全表扫描:
select id from t where name like ‘%abc%’
e. 若是在 where 子句中使用参数,也会致使全表扫描。由于SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。
然而,若是在编译时创建访问计划,变量的值仍是未知的,于是没法做为索引选择的输入项。以下面语句将进行全表扫描:
select id from t where num=@num
能够改成强制查询使用索引:
select id from t with(index(索引名)) where num=@num
f. 应尽可能避免在 where 子句中对字段进行表达式操做,这将致使引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改成:
select id from t where num=100*2
g. 应尽可能避免在where子句中对字段进行函数操做,这将致使引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’
–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′)=0
–‘2005-11-30’生成的id
应改成:
select id from t where name like ‘abc%’ select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′
h. 不要在 where 子句中的“=”左边进行函数、算术运算或其余表达式运算,不然系统将可能没法正确使用索引。
i. 不要写一些没有意义的查询,如须要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,可是会消耗系统资源的,应改为这样:
create table #t(…)
j. 不少时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
k. 任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
l. 尽可能避免使用游标,由于游标的效率较差,若是游标操做的数据超过1万行,那么就应该考虑改写。
m. 尽可能避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
n. 尽可能避免大事务操做,提升系统并发能力。
3)java方面:重点内容
a.尽量的少造对象。
b.合理摆正系统设计的位置。大量数据操做,和少许数据操做必定是分开的。大量的数据操做,确定不是ORM框架搞定的。,
c.使用jDBC连接数据库操做数据
d.控制好内存,让数据流起来,而不是所有读到内存再处理,而是边读取边处理;
e.合理利用内存,有的数据要缓存
如何优化数据库,如何提升数据库的性能?
1) 硬件调整性能
最有可能影响性能的是磁盘和网络吞吐量,解决办法扩大虚拟内存,并保证有足够能够扩充的空间;把数据库服务器上的没必要要服务关闭掉;把数据库服务器和主域服务器分开;把SQL数据库服务器的吞吐量调为最大;在具备一个以上处理器的机器上运行SQL。
2)调整数据库
若对该表的查询频率比较高,则创建索引;创建索引时,想尽对该表的全部查询搜索操做, 按照where选择条件创建索引,尽可能为整型键创建为有且只有一个簇集索引,数据在物理上按顺序在数据页上,缩短查找范围,为在查询常用的所有列创建非簇集索引,能最大地覆盖查询;可是索引不可太多,执行UPDATE DELETE INSERT语句须要用于维护这些索引的开销量急剧增长;避免在索引中有太多的索引键;避免使用大型数据类型的列为索引;保证每一个索引键值有少数行。
3)使用存储过程
应用程序的实现过程当中,可以采用存储过程实现的对数据库的操做尽可能经过存储过程来实现,由于存储过程是存放在数据库服务器上的一次性被设计、编码、测试,并被再次使用,须要执行该任务的应用能够简单地执行存储过程,而且只返回结果集或者数值,这样不只可使程序模块化,同时提升响应速度,减小网络流量,而且经过输入参数接受输入,使得在应用中完成逻辑的一致性实现。
4)应用程序结构和算法
创建查询条件索引仅仅是提升速度的前提条件,响应速度的提升还依赖于对索引的使用。由于人们在使用SQL时每每会陷入一个误区,即太关注于所得的结果是否正确,特别是对数据量不是特别大的数据库操做时,是否创建索引和使用索引的好坏对程序的响应速度并不大,所以程序员在书写程序时就忽略了不一样的实现方法之间可能存在的性能差别,这种性能差别在数据量特别大时或者大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤其明显。在工做实践中发现,不良的SQL每每来自于不恰当的索引设计、不充份的链接条件和不可优化的where子句。在对它们进行适当的优化后,其运行速度有了明显地提升!