什么是802.11G协议
IEEE802.11工做组近年来开始定义新的物理层标准IEEE802.11g。与之前的IEEE802.11协议标准相比,IEEE802.11g草案有如下两个特色:在2.4GHz频段使用正交频分复用(
OFDM
)调制
技术
,使数据
传输
速率提升到20Mbit/s以上;可以与IEEE802.11b的
Wi-Fi
系统互联互通,可共存于同一AP的网络里,从而保障了后向兼容性。这样原有的W
LAN
系统能够平滑地向高速
WLAN
过渡,延长了IEEE802.11b产品的使用寿命,下降了用户的投资。2003年7月IEEE802.11工做组批准了IEEE802.11g草案,该标准成为人们关注的新焦点。
实现的关键技术
随着WLAN技术的应用日渐普遍,用户对数据传输速率的要求愈来愈高。可是在室内这个较为复杂的电磁环境中,多经效应、频率选择性衰落和其它干扰源的存在使得无线
信道
中高速数据传输的实现比有线信道困难,所以WLAN须要采用合适的调制技术。
IEEE802.11WLAN是一种能支持较高数据传输速率(1~54Mbit/s),采用微蜂窝、微微蜂窝结构,自主管理的计算机
局域网
络。其关键技术大体有3种,直序列扩频调制技术(DSSS:Direct Sequence Spread Spectrum)及补码键控(CCK:Complementary Code Keying)技术、包二进制卷积(PBCC:Packet Binary Convolutional Code)和正交频分复用技术OFDM:Orthogonal Frequency Division Mustiplexing。每种技术皆有其特色,目前扩频调制技术正成为主流,而OFDM技术因为其优越的传输性能成为人们关注的新焦点。
1.DSSS调制技术
基于DSSS的调制技术有3种。最初IEEE802.11标准制定在1Mbit/s数据速率下采用差分二相相移键控(DBPSK:DifferentialBinary Phase Shift Keying)。若是要提供2 Mbit/s的数据速率,可采用差分正交相移键控(DQPSK: Differential Quadrature Phase Shift Keying),这种方法每次处理两个比特码元,成为双比特。第三种是基于CCK的QPSK,是IEEE802.11b标准采用的基本数据调制方式。它采用了补码序列与直序列扩频技术,是一种单载波调制技术,经过相移键控(PSK)方式传输数据,传输速率分为1,2,5.5和11 Mbit/s。CCK经过与接收端的Rake接收机配合使用,可以在高效率传输数据的同时有效克服多径效应。IEEE802.11b经过使用CCK调制技术来提升数据传输速率,最高可达11 Mbit/s。可是当传输速率超过11 Mbit/s,CCK为了对抗多径干扰,须要更复杂的均衡及调制,实现起来很是困难。所以,IEEE802.11工做组为了推进WLAN的发展,又引入了新的调制技术。
2.PBCC调制技术
PBCC调制技术是由德州仪器(TI)公司提出的,已做为IEEE802.11g的可选项被采纳。PBCC也是单载波调制,但与CCK不一样,它采用了更多复杂的信号星座图。PBCC采用8PSK,而CCK使用BPSK/QPSK;另外PBCC使用了卷积码,而CCK使用区块码。所以,它们的解调过程是十分不一样的。PBCC能够完成更高速率的数据传输,其传输速率为11,22,33Mbit/s。
3.OFDM技术
OFDM技术实际上是多载波调制(MCM:Multi-CarrierModulation)的一种。其主要思想是:将信道分红许多正交子信道,在每一个子信道上进行窄带调制和传输,这样减小了子信道之间的相互干扰。每一个子信道上的信号带宽小于信道的相关带宽,所以每一个子信道上的频率选择性衰落是平坦的,大大消除了符号间干扰。
因为在OFDM系统中各个子信道的载波相互正交,因而它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时还提升了频谱利用率。在各个子信道中的这种正交调制和解调能够采用反向快速傅里叶变换(IFFT)和快速傅里叶变换(FFT)方法来实现,随着大规模集成电路技术与DSP技术的发展,IFFT和FFT都是很是容易实现的。FFT的引入,大大下降了OFDM实现的复杂性,提高了系统的性能。
无线数据业务通常都存在非对称性,即下行链路中传输的数据量要远远大于上行链路中的数据传输量。所以不管从用户高速数据传输业务的需求,仍是从
无线通讯
自身来考虑,都但愿物理层支持非对称高速数据传输,而OFDM很容易经过使用不一样数量的子信道来实现上行和下行链路中不一样的传输速率。
因为无线信道存在频率选择性,全部的子信道不会同时处于比较深的衰落状况中,所以能够经过动态比特分配以及动态子信道分配的方法,充分利用信噪比高的子信道,从而提高系统性能。因为窄带干扰只能影响一小部分子载波,所以OFDM系统在某种程度上能抵抗这种干扰。
OFDM技术有很是广阔的发展前景,已成为第四代
移动通讯
的核心技术。IEEE802.11a/g标准为了支持高速数据传输都采用了OFDM调制技术。目前,OFDM结合时空编码、分集、干扰〔包括码间干扰(ISI)和信道间干扰(ICI)〕抑制以及智能天线技术,最大程度提升了物理层的可靠性。如再结合自适应调制、自适应编码以及动态子载波分配、动态比特分配算法等技术,可使其性能获得进一步优化。
协议帧结构
从网络逻辑结构上来看,IEEE802.11只定义了物理层及MAC子层。MAC层提供对共享无线介质的竞争使用和无竞争使用,具备无线介质访问、网络链接、数据验证和保密等功能。
物理层为
数据链路
层提供物理链接,实现比特流的透明传输,所传数据单位为比特。物理层定义了通讯设备与接口硬件的机械、电气功能和过程的特性,用以创建、维持和释放物理链接。 物理层由三部分组成:物理层管理层、物理层会聚协议(PLCP)和物理介质依赖子层(PMD)。
IEEE802.11g的物理帧结构分为前导信号(Preamble)、信头Header和负载Payload。Preamble主要用于肯定移动台和接入点之间什么时候发送和接收数据,传输进行时告知其它移动台以避免冲突,同时传送同步信号及帧间隔。Preamble完成,接收方才开始接收数据。Header在Preamble以后用来传输一些重要的数据好比负载长度、传输速率、服务等信息。因为数据率及要传送字节的数量不一样,Payload的包长变化很大,能够十分短也能够十分长。
在一帧信号的传输过程当中,Preamble和Header所占的传输时间越多,Payload用的传输时间就越少,传输的效率越低。
综合上述3种调制技术的特色,IEEE802.11g采用了OFDM等关键技术来保障其优越的性能,分别对Preamble,Header,Payload进行调制,这种帧结构称为OFDM/OFDM方式。
另外,IEEE802.11g草案标准规定了可选项与必选项,为了保障与IEEE
802.11b
兼容也可采用CCK/OFDM和CCK/PBCC的可选调制方式。所以,OFDM调制为必选项保障传输速率达到54Mbit/s;采用CCK调制做为必选保障后向兼容性;CCK/PBCC与CCK/OFDM做为可选项。IEEE802.11g的帧结构比较见。
(1)OFDM/OFDM
Preamble,Header和Payload都使用OFDM进行调制传输,其传输速率可达54Mbit/s。OFDM的一个好特色是它有短的Preamble,CCK调制信号的帧头是72μs,而OFDM调制信号的帧头仅为16μs。帧头是一个信号的重要组成部分,帧头占有时间的减小,提升了信号传送数据的能力。OFDM容许较短的Header给更多的时间用于传输数据,具备较高的传输效率。所以,对于11Mbit/s的传输速率,CCK调制是一个好的选择,但要继续提高速率必须使用OFDM调制技术。它的最高传输速率可达54Mbit/s。IEEE802.11g协议中的OFDMOFDM方式也能够和Wi-Fi共存,不过它需使用RTS/CTS协议来解决冲突问题。
(2)CCK/OFDM
它是一种混合调制方式,是IEEE802.11g的可选项。其Header和Preamble用CCK调制方式传输,OFDM技术传送负载。因为OFDM技术和CCK技术是分离的,所以在Preamble和Payload之间要有CCK和OFDM的转换。
IEEE802.11g用CCK/OFDM技术来保障与IEEE802.11b共存。IEEE802.11b不能解调OFDM格式的数据,因此不免会发生数据传输冲突,IEEE802.11g使用CCK技术传输Header和Preamble就可使IEEE802.11b兼容,使其能够接收IEEE802.11g的Header从而避免冲突。这样保障了与IEEE802.11bWi-Fi设备的后向兼容性,但因为Preamble/Header使用CCK调制,增大了开销,传输速率比OFDMOFDM方式的有所降低。
(3)CCK/PBCC
CCK/PBCC和CCK/OFDM同样,PBCC也是混合波形,包头使用CCK调制而负载使用PBCC调制方式,这样它能够工做于高速率上并与IEEE802.11b兼容。PBCC调制技术最高数据传输速率是33Mbit/s,比OFDM或CCK/OFDM的传送速率低。
性能分析
还没有正式成为标准的IEEE802.11g草案因为其不一样的特色,成为人们关注的焦点。IEEE802.11g与IEEE802.11b的兼容性,与同频设备的共存能力及OFDM技术自身的问题将成为研究热点。
IEEE802.11g的兼容性
IEEE802.11g兼容性指的是IEEE802.11g设备能和IEEE802.11b设备在同一个AP节点网络里互联互通。IEEE802.11g的一个最大特色就是要保障与IEEE802.11bWi-Fi系统兼容。IEEE802.11g能够接收OFDM和CCK数据,但传统的Wi-Fi系统只能接收CCK信息,这就产生了一个问题,即在二者共存的环境中如何解决因为IEEE802.11b不能解调OFDM格式信息帧头所带来的冲突问题。而为了解决上述问题,IEEE802.11g采用了RTS/CTS技术。
最初,IEEE802.11引入RTS/CTS机制是为了解决隐蔽站问题,即发送站检测不到另外一个站在发送数据,于是在接收站发生碰撞的状况。
IEEE802.11b与IEEE802.11g混合工做的状况与隐蔽站问题很是类似,IEEE802.11b设备没法接收OFDM格式的IEEE802.11g的信息帧头,所以能够采用RTS/CTS机制来解决。
欢迎关注本站公众号,获取更多信息