Python机器学习库scikit-learn实践

原文:http://blog.csdn.net/zouxy09/article/details/48903179html

 

1、概述python

       机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出。固然了,算法之林虽大,但能者仍是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘。随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所承认和青睐,同时得到了更多社区力量的支持、改进和推广。算法

       以最普遍的分类算法为例,大体能够分为线性和非线性两大派别。线性算法有著名的逻辑回归、朴素贝叶斯、最大熵等,非线性算法有随机森林、决策树、神经网络、核机器等等。线性算法举的大旗是训练和预测的效率比较高,但最终效果对特征的依赖程度较高,须要数据在特征层面上是线性可分的。所以,使用线性算法须要在特征工程上下很多功夫,尽可能对特征进行选择、变换或者组合等使得特征具备区分性。而非线性算法则牛逼点,能够建模复杂的分类面,从而能更好的拟合数据。数据库

       那在咱们选择了特征的基础上,哪一个机器学习算法能取得更好的效果呢?谁也不知道。实践是检验哪一个好的不二标准。那难道要苦逼到写五六个机器学习的代码吗?No,机器学习社区的力量是强大的,码农界的共识是不重复造轮子!所以,对某些较为成熟的算法,总有某些优秀的库能够直接使用,省去了大伙调研的大部分时间。网络

       基于目前使用python较多,而python界中远近闻名的机器学习库要数scikit-learn莫属了。这个库优势不少。简单易用,接口抽象得很是好,并且文档支持实在感人。本文中,咱们能够封装其中的不少机器学习算法,而后进行一次性测试,从而便于分析取优。固然了,针对具体算法,超参调优也很是重要。dom

 

2、Scikit-learn的python实践机器学习

2.一、Python的准备工做函数

       Python一个备受欢迎的点是社区支持不少,有很是多优秀的库或者模块。可是某些库之间有时候也存在依赖,因此要安装这些库也是挺繁琐的过程。但总有人忍受不了这种繁琐,都会开发出很多自动化的工具来节省各位客官的时间。其中,我的总结,安装一个python的库有如下三种方法:工具

1)Anaconda学习

       这是一个很是齐全的python发行版本,最新的版本提供了多达195个流行的python包,包含了咱们经常使用的numpy、scipy等等科学计算的包。有了它,妈妈不再用担忧我焦头烂额地安装一个又一个依赖包了。Anaconda在手,轻松我有!下载地址以下:http://www.continuum.io/downloads

2)Pip

       使用过Ubuntu的人,对apt-get的爱只有本身懂。其实对Python的库的下载和安装能够借助pip工具的。须要安装什么库,直接下载和安装一条龙服务。在pip官网https://pypi.python.org/pypi/pip下载安装便可。将来的需求就在#pip install xx 中。

3)源码包

       若是上述两种方法都没有找到你的库,那你直接把库的源码下载回来,解压,而后在目录中会有个setup.py文件。执行#python setup.py install 便可把这个库安装到python的默认库目录中。

2.二、Scikit-learn的测试

       scikit-learn已经包含在Anaconda中。也能够在官方下载源码包进行安装。本文代码里封装了以下机器学习算法,咱们修改数据加载函数,便可一键测试:

classifiers = {'NB':naive_bayes_classifier, 
                  'KNN':knn_classifier,
                   'LR':logistic_regression_classifier,
                   'RF':random_forest_classifier,
                   'DT':decision_tree_classifier,
                  'SVM':svm_classifier,
                'SVMCV':svm_cross_validation,
                 'GBDT':gradient_boosting_classifier
    }

  

 

 

train_test.py

#!usr/bin/env python
#-*- coding: utf-8 -*-

import sys
import os
import time
from sklearn import metrics
import numpy as np
import cPickle as pickle

reload(sys)
sys.setdefaultencoding('utf8')

# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
    from sklearn.naive_bayes import MultinomialNB
    model = MultinomialNB(alpha=0.01)
    model.fit(train_x, train_y)
    return model


# KNN Classifier
def knn_classifier(train_x, train_y):
    from sklearn.neighbors import KNeighborsClassifier
    model = KNeighborsClassifier()
    model.fit(train_x, train_y)
    return model


# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
    from sklearn.linear_model import LogisticRegression
    model = LogisticRegression(penalty='l2')
    model.fit(train_x, train_y)
    return model


# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
    from sklearn.ensemble import RandomForestClassifier
    model = RandomForestClassifier(n_estimators=8)
    model.fit(train_x, train_y)
    return model


# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
    from sklearn import tree
    model = tree.DecisionTreeClassifier()
    model.fit(train_x, train_y)
    return model


# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
    from sklearn.ensemble import GradientBoostingClassifier
    model = GradientBoostingClassifier(n_estimators=200)
    model.fit(train_x, train_y)
    return model


# SVM Classifier
def svm_classifier(train_x, train_y):
    from sklearn.svm import SVC
    model = SVC(kernel='rbf', probability=True)
    model.fit(train_x, train_y)
    return model

# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
    from sklearn.grid_search import GridSearchCV
    from sklearn.svm import SVC
    model = SVC(kernel='rbf', probability=True)
    param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
    grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
    grid_search.fit(train_x, train_y)
    best_parameters = grid_search.best_estimator_.get_params()
    for para, val in best_parameters.items():
        print para, val
    model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
    model.fit(train_x, train_y)
    return model

def read_data(data_file):
    import gzip
    f = gzip.open(data_file, "rb")
    train, val, test = pickle.load(f)
    f.close()
    train_x = train[0]
    train_y = train[1]
    test_x = test[0]
    test_y = test[1]
    return train_x, train_y, test_x, test_y
    
if __name__ == '__main__':
    data_file = "mnist.pkl.gz"
    thresh = 0.5
    model_save_file = None
    model_save = {}
    
    test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']
    classifiers = {'NB':naive_bayes_classifier, 
                  'KNN':knn_classifier,
                   'LR':logistic_regression_classifier,
                   'RF':random_forest_classifier,
                   'DT':decision_tree_classifier,
                  'SVM':svm_classifier,
                'SVMCV':svm_cross_validation,
                 'GBDT':gradient_boosting_classifier
    }
    
    print 'reading training and testing data...'
    train_x, train_y, test_x, test_y = read_data(data_file)
    num_train, num_feat = train_x.shape
    num_test, num_feat = test_x.shape
    is_binary_class = (len(np.unique(train_y)) == 2)
    print '******************** Data Info *********************'
    print '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)
    
    for classifier in test_classifiers:
        print '******************* %s ********************' % classifier
        start_time = time.time()
        model = classifiers[classifier](train_x, train_y)
        print 'training took %fs!' % (time.time() - start_time)
        predict = model.predict(test_x)
        if model_save_file != None:
            model_save[classifier] = model
        if is_binary_class:
            precision = metrics.precision_score(test_y, predict)
            recall = metrics.recall_score(test_y, predict)
            print 'precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)
        accuracy = metrics.accuracy_score(test_y, predict)
        print 'accuracy: %.2f%%' % (100 * accuracy) 

    if model_save_file != None:
        pickle.dump(model_save, open(model_save_file, 'wb'))

  

 

4、测试结果

       本次使用mnist手写体库进行实验:http://deeplearning.net/data/mnist/mnist.pkl.gz。共5万训练样本和1万测试样本。

       代码运行结果以下:

 

reading training and testing data...
******************** Data Info *********************
#training data: 50000, #testing_data: 10000, dimension: 784
******************* NB ********************
training took 0.287000s!
accuracy: 83.69%
******************* KNN ********************
training took 31.991000s!
accuracy: 96.64%
******************* LR ********************
training took 101.282000s!
accuracy: 91.99%
******************* RF ********************
training took 5.442000s!
accuracy: 93.78%
******************* DT ********************
training took 28.326000s!
accuracy: 87.23%
******************* SVM ********************
training took 3152.369000s!
accuracy: 94.35%
******************* GBDT ********************
training took 7623.761000s!
accuracy: 96.18%

  

 

       在这个数据集中,因为数据分布的团簇性较好(若是对这个数据库了解的话,看它的t-SNE映射图就能够看出来。因为任务简单,其在deep learning界已被认为是toy dataset),所以KNN的效果不赖。GBDT是个很是不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列常常能见其身影。三个臭皮匠胜过诸葛亮,仍是被验证有道理的,特别是三个臭皮匠还能力互补的时候!

       还有一个在实际中很是有效的方法,就是融合这些分类器,再进行决策。例如简单的投票,效果都很是不错。建议在实践中,你们均可以尝试下。

相关文章
相关标签/搜索