# 第一次导入 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor --where "actor_id < 50" --username sakila -P --num-mappers 1 --target-dir /tmp/hive/sqoop/actor_all ... 18/10/15 14:32:14 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 14:32:34 INFO mapreduce.Job: Running job: job_1539583112983_0002 18/10/15 14:32:49 INFO mapreduce.Job: Job job_1539583112983_0002 running in uber mode : false 18/10/15 14:32:49 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 14:33:06 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 14:33:07 INFO mapreduce.Job: Job job_1539583112983_0002 completed successfully 18/10/15 14:33:08 INFO mapreduce.Job: Counters: 30 ... 18/10/15 14:33:08 INFO mapreduce.ImportJobBase: Transferred 1.8262 KB in 40.9516 seconds (45.6636 bytes/sec) 18/10/15 14:33:08 INFO mapreduce.ImportJobBase: Retrieved 49 records. [hadoop@node224 ~]$ hdfs dfs -cat /tmp/hive/sqoop/actor_all/part-m-00000 1,PENELOPE,GUINESS,2006-02-15 04:34:33.0 ... 48,FRANCES,DAY-LEWIS,2006-02-15 04:34:33.0 49,ANNE,CRONYN,2006-02-15 04:34:33.0 [hadoop@node224 ~]$ # apppend增量导入actor_id < 50 # 指定增量模式 --incremental (mode append|lastmodified) # 指定增量校对字段 --check-column (col) # 指定增量起始值 --last-value (value) # append模式增量 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor --username sakila -P --incremental append --check-column actor_id --last-value 49 --num-mappers 1 --target-dir /tmp/hive/sqoop/actor_all ... Enter password: ... 18/10/15 14:43:03 INFO mapreduce.Job: Running job: job_1539583112983_0003 18/10/15 14:43:19 INFO mapreduce.Job: Job job_1539583112983_0003 running in uber mode : false 18/10/15 14:43:19 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 14:43:34 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 14:43:35 INFO mapreduce.Job: Job job_1539583112983_0003 completed successfully 18/10/15 14:43:35 INFO mapreduce.Job: Counters: 30 ... 18/10/15 14:43:35 INFO mapreduce.ImportJobBase: Transferred 5.79 KB in 38.6992 seconds (153.2074 bytes/sec) 18/10/15 14:43:35 INFO mapreduce.ImportJobBase: Retrieved 151 records. 18/10/15 14:43:35 INFO util.AppendUtils: Appending to directory actor_all 18/10/15 14:43:35 INFO util.AppendUtils: Using found partition 1 18/10/15 14:43:35 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments: 18/10/15 14:43:35 INFO tool.ImportTool: --incremental append 18/10/15 14:43:35 INFO tool.ImportTool: --check-column actor_id 18/10/15 14:43:35 INFO tool.ImportTool: --last-value 200 18/10/15 14:43:35 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create') [hadoop@node224 ~]$ hdfs dfs -cat /tmp/hive/sqoop/actor_all/part-m-00001 50,NATALIE,HOPKINS,2006-02-15 04:34:33.0 ... 200,JULIA,FAWCETT,2006-02-15 04:34:33.0
# 将actor_new表中的时间修改非相同 UPDATE actor_new SET last_update = DATE_ADD(last_update,INTERVAL (FLOOR(RAND()*199+1)) DAY) # 第一次导入 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor_new --where "last_update < '2006-04-25 04:34:33'" --username sakila -P --num-mappers 1 --target-dir /tmp/hive/sqoop/actor_lastmodified --delete-target-dir ... 18/10/15 14:57:23 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 14:57:42 INFO mapreduce.Job: Running job: job_1539583112983_0004 18/10/15 14:58:01 INFO mapreduce.Job: Job job_1539583112983_0004 running in uber mode : false 18/10/15 14:58:01 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 14:58:22 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 14:58:23 INFO mapreduce.Job: Job job_1539583112983_0004 completed successfully ... 18/10/15 14:58:23 INFO mapreduce.ImportJobBase: Transferred 2.6592 KB in 32.9053 seconds (82.7527 bytes/sec) 18/10/15 14:58:23 INFO mapreduce.ImportJobBase: Retrieved 69 records. # 经过 lastmodified 增量模式导入时,当目标目录存在须要指定--merge-key,经过该指定的列进行merge合并 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor_new --username sakila -P --incremental lastmodified --check-column last_update --last-value '2006-04-25 04:34:33' --num-mappers 1 --target-dir /tmp/hive/sqoop/actor_lastmodified ... 18/10/15 15:05:10 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 15:05:20 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/a00f6459986efc548e86cabd08b4554d/actor_new.jar 18/10/15 15:05:22 ERROR tool.ImportTool: Import failed: --merge-key or --append is required when using --incremental lastmodified and the output directory exists. [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor_new --username sakila -P --incremental lastmodified --check-column last_update --last-value '2006-04-25 04:34:33' --merge-key actor_id --num-mappers 1 --target-dir /tmp/hive/sqoop/actor_lastmodified ... 18/10/15 15:08:44 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 15:09:02 INFO mapreduce.Job: Running job: job_1539583112983_0006 18/10/15 15:09:11 INFO mapreduce.Job: Job job_1539583112983_0006 running in uber mode : false 18/10/15 15:09:11 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 15:09:23 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 15:09:24 INFO mapreduce.Job: Job job_1539583112983_0006 completed successfully ... 18/10/15 15:09:24 INFO mapreduce.ImportJobBase: Transferred 4.957 KB in 27.9354 seconds (181.705 bytes/sec) ... 18/10/15 15:09:27 INFO mapreduce.Job: Running job: job_1539583112983_0007 18/10/15 15:09:43 INFO mapreduce.Job: Job job_1539583112983_0007 running in uber mode : false 18/10/15 15:09:43 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 15:09:57 INFO mapreduce.Job: map 50% reduce 0% 18/10/15 15:10:05 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 15:10:15 INFO mapreduce.Job: map 100% reduce 100% ... 18/10/15 15:10:16 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments: 18/10/15 15:10:16 INFO tool.ImportTool: --incremental lastmodified 18/10/15 15:10:16 INFO tool.ImportTool: --check-column last_update 18/10/15 15:10:16 INFO tool.ImportTool: --last-value 2018-10-15 15:02:19.0 18/10/15 15:10:16 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create')
将命令行保存为job,方便一次定义屡次使用,同时简化命令行操做java
# 定义一个job --create <job-id> # 查看job的配置参数 --show <job-id> # 列出全部已定义的job --list # 执行指定job --exec <job-id> # 删除job --delete <job-id>
操做实例node
# 定义一次全量向hive中加载指定数据 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --create impjob01_increment_actors -- import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor --where "actor_id < 50" --username sakila -P --hive-import --hive-table db01.t_actors_all --num-mappers 1 ... Enter password: 18/10/15 16:49:07 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override 18/10/15 16:49:07 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc. # 查询job的参数信息 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --show impjob01_increment_actors ... Enter password: Job: impjob01_increment_actors Tool: import Options: ---------------------------- verbose = false hcatalog.drop.and.create.table = false db.connect.string = jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false codegen.output.delimiters.escape = 0 codegen.output.delimiters.enclose.required = false codegen.input.delimiters.field = 0 mainframe.input.dataset.type = p split.limit = null hbase.create.table = false db.require.password = true skip.dist.cache = false hdfs.append.dir = false db.where.clause = actor_id < 50 db.table = actor codegen.input.delimiters.escape = 0 accumulo.create.table = false import.fetch.size = null codegen.input.delimiters.enclose.required = false db.username = sakila reset.onemapper = false codegen.output.delimiters.record = 10 import.max.inline.lob.size = 16777216 sqoop.throwOnError = false hbase.bulk.load.enabled = false hcatalog.create.table = false db.clear.staging.table = false codegen.input.delimiters.record = 0 enable.compression = false hive.overwrite.table = false hive.import = true codegen.input.delimiters.enclose = 0 hive.table.name = db01.t_actors_all accumulo.batch.size = 10240000 hive.drop.delims = false customtool.options.jsonmap = {} codegen.output.delimiters.enclose = 0 hdfs.delete-target.dir = false codegen.output.dir = . codegen.auto.compile.dir = true relaxed.isolation = false mapreduce.num.mappers = 1 accumulo.max.latency = 5000 import.direct.split.size = 0 sqlconnection.metadata.transaction.isolation.level = 2 codegen.output.delimiters.field = 1 export.new.update = UpdateOnly incremental.mode = None hdfs.file.format = TextFile sqoop.oracle.escaping.disabled = true codegen.compile.dir = /tmp/sqoop-root/compile/4ef4d1352923d513acd7ca40fa3fbe3a direct.import = false temporary.dirRoot = _sqoop hive.fail.table.exists = false db.batch = false # 列出全部job [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --list ... Available jobs: impjob01_increment_actors # 删除job [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --delete impjob01_increment_actors ... # 执行job 并补充执行时调用的参数 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --exec impjob01_increment_actors -- --delete-target-dir ... 18/10/15 16:51:19 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 16:51:45 INFO mapreduce.Job: Running job: job_1539583112983_0011 18/10/15 16:51:55 INFO mapreduce.Job: Job job_1539583112983_0011 running in uber mode : false 18/10/15 16:51:55 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 16:52:08 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 16:52:09 INFO mapreduce.Job: Job job_1539583112983_0011 completed successfully 18/10/15 16:52:09 INFO mapreduce.Job: Counters: 30 ... 18/10/15 16:52:09 INFO mapreduce.ImportJobBase: Transferred 1.8262 KB in 30.4684 seconds (61.3751 bytes/sec) 18/10/15 16:52:09 INFO mapreduce.ImportJobBase: Retrieved 49 records. ... 18/10/15 16:52:40 INFO hive.HiveImport: OK 18/10/15 16:52:40 INFO hive.HiveImport: Time taken: 2.172 seconds 18/10/15 16:52:41 INFO hive.HiveImport: Loading data to table db01.t_actors_all 18/10/15 16:52:42 INFO hive.HiveImport: OK 18/10/15 16:52:42 INFO hive.HiveImport: Time taken: 1.869 seconds 18/10/15 16:52:42 INFO hive.HiveImport: Hive import complete. 18/10/15 16:52:42 INFO hive.HiveImport: Export directory is contains the _SUCCESS file only, removing the directory.
经过job模式定义向hive中增量加载数据mysql
[root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --create impjob02_increment_actors -- import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor --username sakila -P --where "actor_id < 100" --incremental append --check-column actor_id --last-value 49 --hive-import --hive-table db01.t_actors_all --num-mappers 1 ... Enter password: 18/10/15 17:01:17 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override 18/10/15 17:01:17 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc. [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --list ... 18/10/15 17:01:35 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Available jobs: impjob01_increment_actors impjob02_increment_actors [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop job --exec impjob02_increment_actors ... Enter password: ... 18/10/15 17:02:29 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 17:02:42 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 17:02:43 INFO mapreduce.Job: Job job_1539583112983_0014 completed successfully ... 18/10/15 17:02:44 INFO mapreduce.ImportJobBase: Transferred 1.8857 KB in 37.7095 seconds (51.2072 bytes/sec) 18/10/15 17:02:44 INFO mapreduce.ImportJobBase: Retrieved 50 records. ... 18/10/15 17:03:18 INFO hive.HiveImport: OK 18/10/15 17:03:18 INFO hive.HiveImport: Time taken: 2.954 seconds 18/10/15 17:03:19 INFO hive.HiveImport: Loading data to table db01.t_actors_all 18/10/15 17:03:20 INFO hive.HiveImport: OK 18/10/15 17:03:20 INFO hive.HiveImport: Time taken: 1.992 seconds 18/10/15 17:03:21 INFO hive.HiveImport: Hive import complete. 18/10/15 17:03:21 INFO hive.HiveImport: Export directory is empty, removing it. 18/10/15 17:03:21 INFO tool.ImportTool: Saving incremental import state to the metastore 18/10/15 17:03:21 INFO tool.ImportTool: Updated data for job: impjob02_increment_actors
记一hive表导出至MySQL的错误(以下),由于在导入时未指定字段的记录分隔符,致使hive在导出时没法解析数据,所以在从RDBMS导入hive前必定要指定好字段分隔符等。以下错误每每不定直接发现问题的缘由,须要经过yarn的web 8088页面查看具体的日志进行分析。web
# 直接指定hive表的目录导出报错,由于导入hive表的数据没法解析 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop export --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor_new --username sakila -P --export-dir /user/hive/warehouse/db01.db/t_actors_all ... Enter password: ... 18/10/15 17:12:39 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 17:13:00 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 17:13:01 INFO mapreduce.Job: Job job_1539583112983_0016 failed with state FAILED due to: Task failed task_1539583112983_0016_m_000001 Job failed as tasks failed. failedMaps:1 failedReduces:0 18/10/15 17:13:01 INFO mapreduce.Job: Counters: 8 Job Counters Failed map tasks=3 Launched map tasks=3 Data-local map tasks=3 Total time spent by all maps in occupied slots (ms)=52283 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=52283 Total vcore-milliseconds taken by all map tasks=52283 Total megabyte-milliseconds taken by all map tasks=53537792 18/10/15 17:13:01 WARN mapreduce.Counters: Group FileSystemCounters is deprecated. Use org.apache.hadoop.mapreduce.FileSystemCounter instead 18/10/15 17:13:01 INFO mapreduce.ExportJobBase: Transferred 0 bytes in 42.3959 seconds (0 bytes/sec) 18/10/15 17:13:02 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead 18/10/15 17:13:02 INFO mapreduce.ExportJobBase: Exported 0 records. 18/10/15 17:13:02 ERROR mapreduce.ExportJobBase: Export job failed! 18/10/15 17:13:02 ERROR tool.ExportTool: Error during export: Export job failed! at org.apache.sqoop.mapreduce.ExportJobBase.runExport(ExportJobBase.java:445) at org.apache.sqoop.manager.SqlManager.exportTable(SqlManager.java:931) at org.apache.sqoop.tool.ExportTool.exportTable(ExportTool.java:80) at org.apache.sqoop.tool.ExportTool.run(ExportTool.java:99) at org.apache.sqoop.Sqoop.run(Sqoop.java:147) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70) at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234) at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243) at org.apache.sqoop.Sqoop.main(Sqoop.java:252) # hdfs上的数据格式 [hadoop@node224 ~]$ hdfs dfs -cat /user/hive/warehouse/db01.db/t_actors_all/part-m-00000 1PENELOPEGUINESS2006-02-15 04:34:33.0 2NICKWAHLBERG2006-02-15 04:34:33.0 3EDCHASE2006-02-15 04:34:33.0 4JENNIFERDAVIS2006-02-15 04:34:33.0 5JOHNNYLOLLOBRIGIDA2006-02-15 04:34:33.0
export 导出默认是insert模式,即向目标表追加记录,这种模式主要用于将记录导出到空的或新表,接收导出结果。转化为insert操做。一条插入失败则任务失败 # 指定更新匹配的字段 --update-key # 指定更新模式 --update-mode <updateonly|allowinsert> # 将导出的记录转换成update语句,若是表里不存在对应记录,则不会像表中插入新数据,若是多行匹配则会更新多行。没有匹配的update任务仍会进行,能够指定多个updatekey updateonly # 执行更新和插入操做 allowinsert
导入hive时设置分隔符和数据规整sql
/usr/local/sqoop-1.4.7/bin/sqoop import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor --where "actor_id < 50" --username sakila -P --hive-import --hive-table db01.t_actors_all --fields-terminated-by ',' --lines-terminated-by '\n' --num-mappers 1 [hadoop@node224 ~]$ hdfs dfs -cat /user/hive/warehouse/db01.db/t_actors_all/part-m-00000 1,PENELOPE,GUINESS,2006-02-15 04:34:33.0 2,NICK,WAHLBERG,2006-02-15 04:34:33.0 3,ED,CHASE,2006-02-15 04:34:33.0
一次全量导出apache
# 再次导出 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop export --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor_new --username sakila -P --export-dir /user/hive/warehouse/db01.db/t_actors_all --input-fields-terminated-by ',' ... 18/10/15 17:37:52 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 17:38:20 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 17:38:49 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 17:38:51 INFO mapreduce.Job: Job job_1539583112983_0018 completed successfully ... 18/10/15 17:38:51 INFO mapreduce.ExportJobBase: Transferred 5.458 KB in 45.0086 seconds (124.1764 bytes/sec) 18/10/15 17:38:51 INFO mapreduce.ExportJobBase: Exported 49 records. # MySQL中的数据 ipems_dvp@localhost : sakila 05:05:00> select count(1) from actor_new; +----------+ | count(1) | +----------+ | 49 | +----------+ 1 row in set (0.00 sec)
增量导入,增长表中的数据json
# 增量导入 [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop import --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor --username sakila -P --where "actor_id < 100" --incremental append --check-column actor_id --last-value 49 --hive-import --hive-table db01.t_actors_all --fields-terminated-by ',' --lines-terminated-by '\n' --num-mappers 1 ... 18/10/15 17:41:34 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 17:42:40 INFO hive.HiveImport: Time taken: 3.445 seconds 18/10/15 17:42:41 INFO hive.HiveImport: Loading data to table db01.t_actors_all 18/10/15 17:42:42 INFO hive.HiveImport: OK 18/10/15 17:42:42 INFO hive.HiveImport: Time taken: 2.031 seconds 18/10/15 17:42:43 INFO hive.HiveImport: Hive import complete. 18/10/15 17:42:43 INFO hive.HiveImport: Export directory is empty, removing it. 18/10/15 17:42:43 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments: 18/10/15 17:42:43 INFO tool.ImportTool: --incremental append 18/10/15 17:42:43 INFO tool.ImportTool: --check-column actor_id 18/10/15 17:42:43 INFO tool.ImportTool: --last-value 99 18/10/15 17:42:43 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create')
hive表中的数据状况api
0: jdbc:hive2://node225:10000/db01> select count(1) from t_actors_all; WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. +-----+--+ | c0 | +-----+--+ | 98 | +-----+--+ 1 row selected (69.208 seconds)
此处测试的allowinsert模式导出,并未按官方文档说的进行合并插入操做,只执行了插入操做,缘由不明,先记录着后边再分析调查。bash
# 合并模式导出 /usr/local/sqoop-1.4.7/bin/sqoop export --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor_new --username sakila -P --export-dir /user/hive/warehouse/db01.db/t_actors_all --input-fields-terminated-by ',' --update-mode allowinsert --update-key actor_id [root@node222 ~]# /usr/local/sqoop-1.4.7/bin/sqoop export --connect jdbc:mysql://192.168.0.200:3306/sakila?useSSL=false --table actor_new --username sakila -P --export-dir /user/hive/warehouse/db01.db/t_actors_all --input-fields-terminated-by ',' --update-mode allowinsert --update-key actor_id ... 18/10/15 17:45:24 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 Enter password: ... 18/10/15 17:45:58 INFO mapreduce.Job: map 0% reduce 0% 18/10/15 17:46:17 INFO mapreduce.Job: map 100% reduce 0% 18/10/15 17:46:18 INFO mapreduce.Job: Job job_1539583112983_0020 completed successfully ... 18/10/15 17:46:18 INFO mapreduce.ExportJobBase: Transferred 6.6807 KB in 39.5958 seconds (172.7707 bytes/sec) 18/10/15 17:46:18 INFO mapreduce.ExportJobBase: Exported 99 records. # 查询导出的数据,并未实现合并 ipems_dvp@localhost : sakila 05:32:27> select count(1) from actor_new; +----------+ | count(1) | +----------+ | 148 | +----------+ 1 row in set (0.00 sec)
从导出的数据结果验证并未执行更新操做oracle