使用python对oracle进行简单性能测试

1、概述

dba在工做中避不开的两个问题,sql使用绑定变量到底会有多少的性能提高?数据库的审计功能若是打开对数据库的性能会产生多大的影响?最近刚好都碰到了,索性作个实验。python

  1. sql使用绑定变量对性能的影响
  2. 开通数据库审计功能对性能的影响

实验采用的办法很简单,就是经过python读取csv文件,而后将其导入到数据库中,最后统计程序执行完成所须要的时间sql

2、准备脚本

python脚本dataimporttest.py数据库

# author: yangbao
# function: 经过导入csv,测试数据库性能

import cx_Oracle
import time


# 数据库链接串
DATABASE_URL = 'user/password@ip:1521/servicename'


class CsvDataImport:

    def __init__(self, use_bind):
        self.csv_name = 'test.csv'
        self.use_bind = use_bind
        if use_bind == 1:
            self.insert_sql = "insert into testtb values(:0, " \
                              "to_date(:1,'yyyy-mm-dd hh24:mi:ss'), " \
                              "to_date(:2,'yyyy-mm-dd hh24:mi:ss'), " \
                              ":3, :4, :5, :6, :7, :8, :9, :10, :11, :12, :13, :14, " \
                              ":15, :16, :17, :18, :19, :20, :21)"  # 使用绑定变量的sql
        else:
            self.insert_sql = "insert into testtb values({0}, " \
                              "to_date('{1}','yyyy-mm-dd hh24:mi:ss'), " \
                              "to_date('{2}','yyyy-mm-dd hh24:mi:ss'), " \
                              "{3}, {4}, '{5}', {6}, '{7}', {8}, {9}, {10}, {11}, {12}, {13}, {14}, " \
                              "{15}, {16}, {17}, {18}, {19}, {20}, {21})"  # 不使用绑定变量的sql

    def data_import(self):

            begin_time = time.perf_counter()

            try:
                conn = cx_Oracle.connect(DATABASE_URL)
                curs = conn.cursor()

                with open(self.csv_name) as f:
                    csv_contents = f.readlines()

                import_rows = 0

                message = '{} start to import'.format(self.csv_name)
                print(message)

                for line, csv_content in enumerate(csv_contents[1:]):

                    data = csv_content.split(',')
                    if self.use_bind == 1:
                        data = map(lambda x: None if x == '' else x, data)
                    else:
                        data = map(lambda x: 'null' if x == '' else x, data)
                    data = list(data)
                    data[-1] = data[-1].replace('\n', '')

                    if self.use_bind == 1:
                        curs.execute(self.insert_sql, data)  # 使用绑定变量的方式插入数据
                    else:
                        # print(self.insert_sql.format(*data))
                        curs.execute(self.insert_sql.format(*data))  # 使用非绑定变量的方式插入数据
                    import_rows += 1
                    if import_rows % 10000 == 0:
                        curs.execute('commit')
                        message = '{} has imported {} lines'.format(self.csv_name, import_rows)
                        print(message)

                conn.commit()
                curs.close()
                conn.close()

                end_time = time.perf_counter()

                elapsed = round(end_time - begin_time, 2)
                message = '{}, import rows: {}, use_bind: {}, elapsed: {}'.format(
                    self.csv_name, import_rows, self.use_bind, elapsed)
                print(message)

            except Exception as e:
                message = '{} import failed, reason: {}'.format(self.csv_name, str(e))
                print(message)


if __name__ == '__main__':
    CsvDataImport(use_bind=1).data_import()

csv文件
test.csv(内容略)缓存

3、测试sql使用绑定变量对性能的影响

a. 使用绑定变量

对库进行重启,目的是清空数据库内的全部缓存,避免对实验结果产生干扰性能

SQL> startup force;
SQL> drop table yang.testtb purge;
SQL> create table yang.testtb as select * from yang.test where 1=0;

运行脚本python dataimporttest.py测试

结果:test.csv, import rows: 227795, use_bind: 1, elapsed: 260.31code

b. 不使用绑定变量

对库进行重启orm

SQL> startup force;
SQL> drop table yang.testtb purge;
SQL> create table yang.testtb as select * from yang.test where 1=0;

将脚本的最后一行CsvDataImport(use_bind=1).data_import()改成CsvDataImport(use_bind=0).data_import()ip

运行脚本python dataimporttest.pystring

结果:test.csv, import rows: 227795, use_bind: 0, elapsed: 662.82

能够看到一样的条件下,程序运行的时间,不使用绑定变量是使用绑定变量的2.54倍

4、测试数据库开启审计功能对性能的影响

查看数据库审计功能是否开启

SQL> show parameter audit 
NAME           TYPE        VALUE
-------------- ----------- ----------
audit_trail    string      NONE

统计sys.aud$这张表的行数

SQL> select count(*) from sys.aud$;

  COUNT(*)
----------
         0

因此能够直接拿第三步中的(a. 使用绑定变量)的结果做为没开通审计功能程序运行的时间

对库开通审计功能,并进行重启

SQL> alter system set audit_trail=db_extended scope=spfile;  # 若是设置成db,那么在sys.aud$里面sqltext将为空,也就是说看不到用户执行的sql语句,审计毫无心义
SQL> startup force;
SQL> drop table yang.testtb purge;
SQL> create table yang.testtb as select * from yang.test where 1=0;
SQL> audit insert table by yang;  # 开通对用户yang的insert操做审计

将脚本的最后一行CsvDataImport(use_bind=0).data_import()改成CsvDataImport(use_bind=1).data_import()

运行脚本python dataimporttest.py

结果:test.csv, import rows: 227795, use_bind: 1, elapsed: 604.23

与前面使用绑定变量但没有开通数据库审计功能,程序运行的时间,开通数据库审计功能是不开通数据库审计功能的2.32倍

再来看看sys.aud$这张表的大小

SQL> select count(*) from sys.aud$;

  COUNT(*)
----------
    227798

因sys.aud$这张表中的sqltext与sqlbind都是clob字段,所以须要经过下面的sql去统计该表所占用的空间

SQL> select sum(bytes) from dba_extents where segment_name in (
select distinct name from (select table_name, segment_name from dba_lobs where table_name='AUD$') 
unpivot(name for i in(table_name, segment_name)));

SUM(BYTES)
----------
 369229824

查看testtb这张表占用的空间

SQL> select sum(bytes) from dba_extents where segment_name in ('TESTTB');

SUM(BYTES)
----------
  37748736

能够看到对一个22万行的csv数据导入到数据库,审计的表占用的空间就达到了惊人的360M,而testtb这张表自己也才37M而已

经过上面的实验能够得出,对于数据库的审计功能,开通后会严重拖慢数据库的性能以及消耗sysaux表空间!

5、总结

  1. 代码中尽可能使用绑定变量
  2. 最好不要开通数据库的审计,能够经过堡垒机去实现对用户操做审计(ps:还请你们推荐个堡垒机厂商,这个才是本文最主要的目的_

实验存在不严谨的地方,相关对比数据也仅做为参考

相关文章
相关标签/搜索