R语言学习笔记:字符串处理

想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的相似语法,没一个可行的:正则表达式

C#中:"fitbit" + month + ".jpg"windows

VB:"fitbit" & month & ".jpg"api

Haskell:"fitbit" ++ month ++ ".jpg"app

还想到concat之类的函数,都不行,看来只能查帮助了,原来必需要用一个paste函数。函数

paste()与paste0():链接字符串

paste()不只能够链接多个字符串,还能够将对象自动转换为字符串再相连,另外它还能处理向量,因此功能更强大。ui

paste("fitbit", month, ".jpg", sep="")spa

这个函数的特殊地方在于默认的分隔符是空格,因此必须指定sep="",这样若是month=10时,就会生成fitbit10.jpg这样的字符串。regexp

另外还有一个paste0函数,默认就是sep=""orm

因此paste0("fitbit", month, ".jpg")就与前面的代码简洁一点了。对象

要生成12个月的fitbit文件名:

paste("fitbit", 1:12, ".jpg", sep = "")

[1] "fitbit1.jpg"  "fitbit2.jpg"  "fitbit3.jpg"  "fitbit4.jpg"  "fitbit5.jpg"  "fitbit6.jpg"  "fitbit7.jpg"

[8] "fitbit8.jpg"  "fitbit9.jpg"  "fitbit10.jpg" "fitbit11.jpg" "fitbit12.jpg"

能够看出参数里面有向量时的捉对拼接的效果,若是某个向量较短,就自动补齐:

a <- c("甲","乙","丙", "丁","戊","己","庚","辛","壬","癸")

b <- c("子","丑","寅","卯","辰","巳","午","未","申","酉","戌","亥")

paste0(a, b)

[1] "甲子" "乙丑" "丙寅" "丁卯" "戊辰" "己巳" "庚午" "辛未" "壬申" "癸酉" "甲戌" "乙亥"

paste还有一个collapse参数,能够把这些字符串拼成一个长字符串,而不是放在一个向量中。

> paste("fitbit", 1:3, ".jpg", sep = "", collapse = "; ")

[1] "fitbit1.jpg; fitbit2.jpg; fitbit3.jpg"

 

nchar():求字符个数

nchar()可以获取字符串的长度,它和length()的结果是有区别的。

nchar(c("abc", "abcd"))    #求字符串中的字符个数,返回向量c(3, 4)

length(c("abc", "abcd"))  #返回2,向量中元素的个数

注意nchar(NA)返回2

tolower(x) 和toupper(x) :大小写转换。

不用多说。

 

strsplit:字符串分割

strsplit("2014-10-30 2262 10367 7.4 18 1231 77 88 44", split=" ")

[[1]]

[1] "2014-10-30" "2262"       "10367"      "7.4"        "18"         "1231"       "77"         "88"         "44" 

实际上这个函数支持很是强大的正则表达式。

 

substr与substring:提取子串

substr("abcdef", 2, 4)
[1] "bcd"

substr(c("abcdef", "ghijkl"), 2, 4)
[1] "bcd" "hij"

substr("abcdef", 1:6, 1:6)
[1] "a"

注意还有一个substring函数,效果就不同了:

substring("abcdef",1:6,1:6)
[1] "a" "b" "c" "d" "e" "f"

区别是:substr返回的字串个数等于第一个参数的长度 
而substring返回字串个数等于三个参数中最长向量长度,短向量循环使用。

substr("123456789", c(2, 3), c(4, 5, 6))  #等价于:substr("123456789", 2, 4)

[1] "234"

substring("123456789", c(2, 3), c(4,5,6)) #最长的向量长度为3,其它向量都循环补齐

[1] "234"   "345"   "23456"

 

grep搜索某个模式的子串

grep(pattern, x) 在字符串向量x中查找一个正则表达式pattern,返回包括这个pattern的字符串的索引。

grep("def", c("abc","abcdef","def"))    #第二、3两个字符串中都包含def,因此返回2和3

[1] 2 3

下例中列出windows目录中的全部.exe文件。

files <- list.files("c:/windows")

files[grep("\\.exe$", files)]

[1] "adb.exe" "explorer.exe" "hh.exe" "notepad.exe"

[5] "regedit.exe" "slrundll.exe" "twunk_16.exe" "twunk_32.exe"

[9] "winhelp.exe" "winhlp32.exe"

sub搜索并替换

待整理

sprintf()

这个函数与C语言的函数相似。

sprintf("2+3=%d", 2+3)

[1] "2+3=5"

sprintf("today: %s", date())

[1] "today: Wed Nov 05 14:05:47 2014"

regexpr()

> regexpr("def", "abcdefghi")    #def从第4个字符位置上出现

[1] 4

attr(,"match.length")

[1] 3

attr(,"useBytes")

[1] TRUE

gregexpr()

这个与上面相似,但查找全部匹配的位置。

gregexpr("def", "abcdefghijabcdef")   #在第4和第14个字符上都出现了def

[[1]]

[1]  4 14

 

用R解决个人一个实际问题

如今要自动生成fitbit的10月的统计图,并保存为文件fitbit_month_10.jpg。

m <- 10

jpeg(paste0("fitbit_month_", m, ".jpg"))

monthData <- fitbit[as.double(format(fitbit$date, "%m"))==m, ]

plot(format(monthData$date,"%d"), monthData$step, type="l", xlab="date", ylab="steps", main=paste("2014年",m,"月步数统计图",sep=""))

dev.off()

fitbit_month_10

 

 

 

 

其它内容还未整理,先把网上搜到的资料放到下面。

===============================================

grepl()函数与grep相似,但其后面的"l"则意味着返回的将是逻辑值。

字符串替代:gsub()负责搜索字符串的特定表达式,并用新的内容加以替代。sub()函数是相似的,但只替代第一个发现结果。

chartr(old, new, x)

casefold(x, upper = FALSE)

agrep()  字符不彻底匹配

 

regexec("Adam", text)

## [[1]]
## [1] 9
## attr(,"match.length")
## [1] 4
## ## [[2]]
## [1] 5
## attr(,"match.length")
## [1] 4
## ## [[3]]
## [1] 14
## attr(,"match.length")
## [1] 4

 

rep和grepl函数:
这两个函数返回向量水平的匹配结果,不涉及匹配字符串的详细位置信息。

grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE, fixed = FALSE, useBytes =FALSE, invert = FALSE) grepl(pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE)

虽然参数看起差很少,可是返回的结果不同。下来例子列出C:\windows目录下的全部文件,而后用grep和grepl查找exe文件:

files <- list.files("c:/windows") grep("\\.exe$", files)

## [1] 8 28 30 35 36 58 69 99 100 102 111 112 115 117

grepl("\\.exe$", files)

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
## [34] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [56] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [100] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [111] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE

grep仅返回匹配项的下标,而grepl返回全部的查询结果,并用逻辑向量表示有没有找到匹配。二者的结果用于提取数据子集的结果都同样:

files[grep("\\.exe$", files)]

## [1] "bfsvc.exe" "explorer.exe" "fveupdate.exe" "HelpPane.exe" ## [5] "hh.exe" "notepad.exe" "regedit.exe" "twunk_16.exe" ## [9] "twunk_32.exe" "uninst.exe" "winhelp.exe" "winhlp32.exe" ## [13] "write.exe" "xinstaller.exe"

files[grepl("\\.exe$", files)]

## [1] "bfsvc.exe" "explorer.exe" "fveupdate.exe" "HelpPane.exe" ## [5] "hh.exe" "notepad.exe" "regedit.exe" "twunk_16.exe" ## [9] "twunk_32.exe" "uninst.exe" "winhelp.exe" "winhlp32.exe" ## [13] "write.exe" "xinstaller.exe"

 

6 字符串替换
6.1 sub和gsub函数
虽然sub和gsub是用于字符串替换的函数,但严格地说R语言没有字符串替换的函数,由于R语言无论什么操做对参数都是传值不传址。

text

## [1] "Hellow, Adam!" "Hi, Adam!" "How are you, Adam."

sub(pattern = "Adam", replacement = "world", text)

## [1] "Hellow, world!" "Hi, world!" "How are you, world."

text

## [1] "Hellow, Adam!" "Hi, Adam!" "How are you, Adam."

能够看到:虽说是“替换”,但原字符串并无改变,要改变原变量咱们只能经过再赋值的方式。 sub和gsub的区别是前者只作一次替换(无论有几回匹配),而gsub把知足条件的匹配都作替换:

sub(pattern = "Adam|Ava", replacement = "world", text)

## [1] "Hellow, world!" "Hi, world!" "How are you, world."

gsub(pattern = "Adam|Ava", replacement = "world", text)

## [1] "Hellow, world!" "Hi, world!" "How are you, world."

sub和gsub函数可使用提取表达式(转义字符+数字)让部分变成所有:

sub(pattern = ".*(Adam).*", replacement = "\\1", text)

## [1] "Adam" "Adam" "Adam"

7 字符串提取 用regexpr、gregexpr或regexec函数得到位置信息后再进行字符串提取的操做能够本身试试看。

8 其余:
8.1 strtrim函数
用于将字符串修剪到特定的显示宽度,其用法为strtrim(x, width),返回字符串向量的长度等于x的长度。由于是“修剪”,因此只能去掉多余的字符不能增长其余额外的字符:若是字符串自己的长度小于 width,获得的是原字符串,别期望它会用空格或其余什么字符补齐:

strtrim(c("abcdef", "abcdef", "abcdef"), c(1, 5, 10))

## [1] "a" "abcde" "abcdef"

strtrim(c(1, 123, 1234567), 4)

## [1] "1" "123" "1234"

8.2 strwrap函数
该函数把一个字符串当成一个段落的文字(无论字符串中是否有换行符),按照段落的格式(缩进和长度)和断字方式进行分行,每一行是结果中的一个字符串。例如:

str1 <- "Each character string in the input is first split into paragraphs\n(or lines containing whitespace only). The paragraphs are then\nformatted by breaking lines at word boundaries. The target\ncolumns for wrapping lines and the indentation of the first and\nall subsequent lines of a paragraph can be controlled\nindependently." str2 <- rep(str1, 2)strwrap(str2, width = 80, indent = 2)

## [1] " Each character string in the input is first split into paragraphs (or lines"
## [2] "containing whitespace only). The paragraphs are then formatted by breaking"
## [3] "lines at word boundaries. The target columns for wrapping lines and the"
## [4] "indentation of the first and all subsequent lines of a paragraph can be"
## [5] "controlled independently."
## [6] " Each character string in the input is first split into paragraphs (or lines"
## [7] "containing whitespace only). The paragraphs are then formatted by breaking"
## [8] "lines at word boundaries. The target columns for wrapping lines and the"
## [9] "indentation of the first and all subsequent lines of a paragraph can be"
## [10] "controlled independently."

simplify参数用于指定结果的返回样式,默认为TRUE,即结果中全部的字符串都按顺序放在一个字符串向量中(如上);若是为FALSE,那么结果将是列表。另一个参数exdent用于指定除第一行之外的行缩进:

strwrap(str1, width = 80, indent = 0, exdent = 2)

## [1] "Each character string in the input is first split into paragraphs (or lines"
## [2] " containing whitespace only). The paragraphs are then formatted by breaking"
## [3] " lines at word boundaries. The target columns for wrapping lines and the"
## [4] " indentation of the first and all subsequent lines of a paragraph can be"
## [5] " controlled independently."

8.3 match和charmatch

match("xx", c("abc", "xx", "xxx", "xx"))

## [1] 2

match(2, c(3, 1, 2, 4))

## [1] 3

charmatch("xx", "xx")

## [1] 1

charmatch("xx", "xxa")

## [1] 1

charmatch("xx", "axx")

## [1] NA

match按向量进行运算,返回第一次匹配的元素的位置(若是有),非字符向量也可用。charmatch函数真坑爹。其余不看了,其实有正则表达式就足够。

 

 

 

=================================

听说还有一个stringr包,将本来的字符处理函数进行了打包,统一了函数名和参数。在加强功能基础上,还能处理向量化数据并兼容非字符数据。stringr包号称能让处理字符的时间减小95%。下面将其中的一些主要函数罗列一下。

library(stringr)

# 合并字符串
fruit <- c("apple","banana","pear","pinapple")
res <- str_c(1:4,fruit,sep=' ',collapse=' ')
str_c('I want to buy ',res,collapse=' ')

# 计算字符串长度
str_length(c("i","like","programming R",123,res))

# 按位置取子字符串
str_sub(fruit,1,3)
# 子字符串从新赋值
capital <-toupper(str_sub(fruit,1,1))
str_sub(fruit,rep(1,4),rep(1,4))<- capital

# 重复字符串
str_dup(fruit,c(1,2,3,4))

# 加空白
str_pad(fruit,10,"both")
# 去除空白
str_trim(fruit)

#  根据正则表达式检验是否匹配
str_detect(fruit,"a$")
str_detect(fruit,"[aeiou]")

# 找出匹配的字符串位置
str_locate(fruit,"a")

# 提取匹配的部分
str_extract(fruit,"[a-z]+")
str_match(fruit,"[a-z]+")

# 替换匹配的部分
str_replace(fruit,"[aeiou]","-")

# 分割 str_split(res," ")

相关文章
相关标签/搜索