JavaShuo
栏目
标签
Normalized and Geometry-Aware Self-Attention Network for Image Captioning
时间 2020-12-30
标签
论文阅读
栏目
系统网络
繁體版
原文
原文链接
重点在自注意力机制的image captioning方法上。 现有的Self-Attention方法作者认为存在两个问题: 一个是:Internal Covariate Shift 我的理解就是输入分布不一样 解决办法就是Normalization。 原来的Transformer当中也是有Normalization的,但是作者认为原来的做法不够好: 翻译过来,就是要把norm放到自注意力模块里面
>>阅读原文<<
相关文章
1.
Reflective Decoding Network for Image Captioning论文阅读
2.
Self-critical Sequence Training for Image Captioning
3.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
4.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
5.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
6.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
7.
Pose-Normalized Image Generation for Person Re-identification (note)
8.
论文笔记:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
9.
Ncut算法(Normalized cuts and image segmentation)
10.
PEPSI++: Fast and Lightweight Network for Image Inpainting | 简记
更多相关文章...
•
RSS
元素
-
RSS 教程
•
ASP.NET Image 控件
-
ASP.NET 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 数据传输及反压详解
相关标签/搜索
normalized
captioning
network
image
c#image
action.....and
between...and
react+and
for...of
69.for
系统网络
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github并且新建仓库push代码,从已有仓库clone代码,并且push
3.
设计模式9——模板方法模式
4.
avue crud form组件的快速配置使用方法详细讲解
5.
python基础B
6.
从零开始···将工程上传到github
7.
Eclipse插件篇
8.
Oracle网络服务 独立监听的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目录管理命令基础
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Reflective Decoding Network for Image Captioning论文阅读
2.
Self-critical Sequence Training for Image Captioning
3.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
4.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
5.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
6.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
7.
Pose-Normalized Image Generation for Person Re-identification (note)
8.
论文笔记:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
9.
Ncut算法(Normalized cuts and image segmentation)
10.
PEPSI++: Fast and Lightweight Network for Image Inpainting | 简记
>>更多相关文章<<