Elasticsearch 通讯模块的分析从宏观上介绍了ES Transport模块整体功能,因而就很好奇ElasticSearch是怎么把服务启动起来,以接收Client发送过来的Index索引操做、GET获取文档操做 等一系列操做的呢?本文分析:ElasticSearch6.3.2 Netty Http Server 服务的启动过程。ES节点启动,就是启动各个服务,初始化各个服务代码实现 在 org.elasticsearch.node.Node的构造方法中,从建立 org.elasticsearch.common.network.NetworkModule 对象开始,NetworkModule 就是ES中全部关于网络通讯相关的功能的建立与注册吧。html
final NetworkModule networkModule = new NetworkModule(settings, false, pluginsService.filterPlugins(NetworkPlugin.class), threadPool, bigArrays, pageCacheRecycler, circuitBreakerService, namedWriteableRegistry, xContentRegistry, networkService, restController);
在建立NetworkModule对象时,主要是建立2个用于通讯的Serverjava
A client can either be retrieved from a org.elasticsearch.node.Node started, or connected remotely to one or more nodes using org.elasticsearch.client.transport.TransportClient. Every node in the cluster can handle HTTP and Transport traffic by default. The transport layer is used exclusively for communication between nodes and the Java TransportClient; the HTTP layer is used only by external REST clients.node
Netty4HttpServerTransport 对象建立以下,Netty4TcpTransport 也是相似的逻辑。
org.elasticsearch.common.network.NetworkModule#NetworkModuleapi
Map<String, Supplier<HttpServerTransport>> httpTransportFactory = plugin.getHttpTransports(settings,threadPool,bigArrays,circuitBreakerService,namedWriteableRegistry, xContentRegistry, networkService, dispatcher); for (Map.Entry<String, Supplier<HttpServerTransport>> entry : httpTransportFactory.entrySet()) { registerHttpTransport(entry.getKey(), entry.getValue()); }
Netty4Plugin#getHttpTransports 建立 Netty Http Server:Netty4HttpServerTransport网络
@Override public Map<String, Supplier<HttpServerTransport>> getHttpTransports(Settings settings, ThreadPool threadPool, BigArrays bigArrays,CircuitBreakerService,circuitBreakerService,NamedWriteableRegistry namedWriteableRegistry,NamedXContentRegistry xContentRegistry,NetworkService networkService,HttpServerTransport.Dispatcher dispatcher) { return Collections.singletonMap(NETTY_HTTP_TRANSPORT_NAME, () -> new Netty4HttpServerTransport(settings, networkService, bigArrays, threadPool, xContentRegistry, dispatcher)); }
将构造好的 Transport 对象封装到 TransportServiceapp
//获取构造好的 Netty4Transport final Transport transport = networkModule.getTransportSupplier().get(); //将 Netty4Transport 封装到 TransportService final TransportService transportService = newTransportService(settings, transport, threadPool, networkModule.getTransportInterceptor(), localNodeFactory, settingsModule.getClusterSettings(), taskHeaders);
而后其余须要使用通讯功能的模块,只须要封装 TransportService 对象便可。好比执行用户SEARCH操做的搜索模块 TransportSearchAction,它有一个实例属性SearchTransportService,而SearchTransportService就封装了 TransportService,这样TransportSearchAction就能使用TcpTransport进行通讯了。以下代码所示:
Node.java 构造方法:框架
//构造SearchTransportService对象时f须要TransportService,TransportService对象 是一个"公共链接对象",许多服务都会用到它 final SearchTransportService searchTransportService = new SearchTransportService(settings,transportService,SearchExecutionStatsCollector.makeWrapper(responseCollectorService));
这里额外提一句:各类Action对象所依赖的Service,应该都是在Node.java的构造方法里面建立的:好比TransportSearchAction依赖的SearchTransportService、ClusterService等都是在节点启动时建立的。elasticsearch
当Netty4HttpServerTransport建立完毕后,就须要绑定端口,启动服务。在org.elasticsearch.node.Node.start方法是ES节点中全部服务的启动入口(固然也包括Netty Http Server了)
org.elasticsearch.node.Node#start方法tcp
if (NetworkModule.HTTP_ENABLED.get(settings)) { injector.getInstance(HttpServerTransport.class).start(); }
由于Netty4HttpServerTransport继承了AbstractLifecycleComponent,所以它的启动逻辑在org.elasticsearch.common.component.AbstractLifecycleComponent.start中实现,执行doStart()启动Netty Http Server,并绑定端口到9200
Netty4HttpServerTransport#doStart()ide
protected void doStart() { boolean success = false; try { this.serverOpenChannels = new Netty4OpenChannelsHandler(logger);//---> es for test serverBootstrap = new ServerBootstrap();//workerCount=8, elasticsearch[debug_node][http_server_worker] //channel一旦分配给EventLoopGroup里面的某个EventLoop线程后,该channel上的全部的事件都将由这个EventLoop线程处理 serverBootstrap.group(new NioEventLoopGroup(workerCount, daemonThreadFactory(settings, HTTP_SERVER_WORKER_THREAD_NAME_PREFIX))); serverBootstrap.channel(NioServerSocketChannel.class);//处理链接请求,每一个链接创建后建立一个'child channel'处理该链接的全部IO事件 //为child channel 绑定一个handler, 即用该handler处理该 channel 上的io event serverBootstrap.childHandler(configureServerChannelHandler());//--->Netty4HttpRequestHandler //指定 child channel 一些配置参数 (父channel是处理链接请求的channel, child channel是已创建的链接的事件处理通道) serverBootstrap.childOption(ChannelOption.TCP_NODELAY, SETTING_HTTP_TCP_NO_DELAY.get(settings)); serverBootstrap.childOption(ChannelOption.SO_KEEPALIVE, SETTING_HTTP_TCP_KEEP_ALIVE.get(settings)); //---> TCP 发送缓冲区大小 final ByteSizeValue tcpSendBufferSize = SETTING_HTTP_TCP_SEND_BUFFER_SIZE.get(settings); if (tcpSendBufferSize.getBytes() > 0) { serverBootstrap.childOption(ChannelOption.SO_SNDBUF, Math.toIntExact(tcpSendBufferSize.getBytes())); } //---> TCP 接收缓冲区大小 final ByteSizeValue tcpReceiveBufferSize = SETTING_HTTP_TCP_RECEIVE_BUFFER_SIZE.get(settings); if (tcpReceiveBufferSize.getBytes() > 0) { serverBootstrap.childOption(ChannelOption.SO_RCVBUF, Math.toIntExact(tcpReceiveBufferSize.getBytes())); } serverBootstrap.option(ChannelOption.RCVBUF_ALLOCATOR, recvByteBufAllocator); serverBootstrap.childOption(ChannelOption.RCVBUF_ALLOCATOR, recvByteBufAllocator); final boolean reuseAddress = SETTING_HTTP_TCP_REUSE_ADDRESS.get(settings); serverBootstrap.option(ChannelOption.SO_REUSEADDR, reuseAddress); serverBootstrap.childOption(ChannelOption.SO_REUSEADDR, reuseAddress); this.boundAddress = createBoundHttpAddress();//--->ServerBootStrap绑定端口 if (logger.isInfoEnabled()) { logger.info("{}", boundAddress); } success = true; } finally { if (success == false) { doStop(); // otherwise we leak threads since we never moved to started } } }
Netty Http Server的worker线程数量是:节点所在的机器上的可用CPU核数:(Runtime.getRuntime().availableProcessors()
*2)
其余的一些默认配置以下:
TCP_NODELAY=true, SO_KEEPALIVE=true
ServerBootstrap(ServerBootstrapConfig(group: NioEventLoopGroup, channelFactory: NioServerSocketChannel.class, options: {RCVBUF_ALLOCATOR=io.netty.channel.FixedRecvByteBufAllocator@72ce8a9b, SO_REUSEADDR=true}, childGroup: NioEventLoopGroup, childOptions: {TCP_NODELAY=true, SO_KEEPALIVE=true, RCVBUF_ALLOCATOR=io.netty.channel.FixedRecvByteBufAllocator@72ce8a9b, SO_REUSEADDR=true}, childHandler: org.elasticsearch.http.netty4.Netty4HttpServerTransport$HttpChannelHandler@56ec6ac0))
因为ES Server(实在找不到其余更好的名字来描述了...)是基于 Netty的,那确定有个ChannelHandler负责处理发生在SocketChannel上的事件。而这个ChannelHandler就是:org.elasticsearch.http.netty4.Netty4HttpRequestHandler
org.elasticsearch.http.netty4.Netty4HttpServerTransport.HttpChannelHandler#initChannel 方法中注册了Netty4HttpRequestHandler,所以用户请求就交给Netty4HttpRequestHandler来处理了。
ch.pipeline().addLast("handler", requestHandler);//Netty4HttpRequestHandler 业务逻辑处理
那根据Netty框架,毫无疑问 接收用户请求的起始处理点在 org.elasticsearch.http.netty4.Netty4HttpRequestHandler#channelRead0 方法里面了。
所以,若是想debug一下INDEX操做、GET操做、DELETE操做的入口,在入口点: org.elasticsearch.http.netty4.Netty4HttpRequestHandler#channelRead0 打上debug断点,在返回处:org.elasticsearch.http.netty4.Netty4HttpChannel#sendResponse 打上debug断点,根据IDEA的 dubuger frames 栈追踪 查看各个操做的执行路径。
既然全部的用户操做都是统一的入口,那么又是如何解析这些操做,并最终传递给合适的 TransportXXXAction 来处理的呢?其大概步骤以下:
action.accept(channel)
语句触发执行。return transportAction(action).execute(request, listener)
this.action.doExecute(task, request, listener);
调用每一个实现类TransportXXXAction#doExecute()执行对应的操做!
shardBulkAction.execute(bulkShardRequest, new ActionListener<BulkShardResponse>(){...});
将删除操做提交给"分片处理Action"---TransportShardBulkAction执行。this.action.doExecute(task, request, listener);
,这时就是调用:TransportShardBulkAction的doExecute方法了。而TransportShardBulkAction的doExecute()方法是继承自TransportReplicationAction,能够看到在这里面执行的是ReroutePhase任务,这也很好理解,由于删除一篇文档,须要知道这篇文档在哪一个分片上,须要把删除请求发送到这个分片上去,这也是为何须要ReroutePhase的缘由吧:protected void doExecute(Task task, Request request, ActionListener<Response> listener) { new ReroutePhase((ReplicationTask) task, request, listener).run(); }
6,跟踪到ReroutePhase的doRun()方法里面看:删除操做在本机节点上执行performLocalAction,删除操做在其余远程节点上执行:performRemoteAction。这里,又经过TransportService#sendRequest 方法把请求发送出去了。。。烦,那我就继续跟踪,看看你翻跟斗到哪里去了……
if (primary.currentNodeId().equals(state.nodes().getLocalNodeId())) { performLocalAction(state, primary, node, indexMetaData); } else { performRemoteAction(state, primary, node); }
8,AsyncPrimaryAction#doRun成功获取到锁(PrimaryShardReference)后,回调:AsyncPrimaryAction#onResponse,在createReplicatedOperation(...).execute()
触发底层Lucene删除逻辑。
删除的时候,有相应的删除策略,具体实如今:org.elasticsearch.index.engine.InternalEngine#planDeletionAsPrimary
if (versionValue == null) { currentVersion = Versions.NOT_FOUND; currentlyDeleted = true; } else { currentVersion = versionValue.version; currentlyDeleted = versionValue.isDelete(); } final DeletionStrategy plan; if (delete.versionType().isVersionConflictForWrites(currentVersion, delete.version(), currentlyDeleted)) { final VersionConflictEngineException e = new VersionConflictEngineException(shardId, delete, currentVersion, currentlyDeleted); plan = DeletionStrategy.skipDueToVersionConflict(e, currentVersion, currentlyDeleted); } else { plan = DeletionStrategy.processNormally( currentlyDeleted, generateSeqNoForOperation(delete), delete.versionType().updateVersion(currentVersion, delete.version())); } return plan;
删除doc的时候,还要判断docid在不在,具体实如今:org.elasticsearch.index.engine.InternalEngine#loadCurrentVersionFromIndex
private long loadCurrentVersionFromIndex(Term uid) throws IOException { assert incrementIndexVersionLookup(); try (Searcher searcher = acquireSearcher("load_version", SearcherScope.INTERNAL)) { return VersionsAndSeqNoResolver.loadVersion(searcher.reader(), uid); } }
另外在看源码的时候发现,** delete-by-doc-id 是不会触发 段合并的 **。因此,delete by id 这种方式的删除是很快的且对集群负载影响很小:
// NOTE: we don't throttle this when merges fall behind because delete-by-id does not create new segments:
最终在:org.elasticsearch.index.engine.InternalEngine#delete 方法里面进行Lucene层面上的文档删除:
if (delete.origin() == Operation.Origin.PRIMARY) { plan = planDeletionAsPrimary(delete); } else { plan = planDeletionAsNonPrimary(delete); } if (plan.earlyResultOnPreflightError.isPresent()) { deleteResult = plan.earlyResultOnPreflightError.get(); } else if (plan.deleteFromLucene) { deleteResult = deleteInLucene(delete, plan); } else { deleteResult = new DeleteResult( plan.versionOfDeletion, plan.seqNoOfDeletion, plan.currentlyDeleted == false); }
具体实如今:org.elasticsearch.index.engine.InternalEngine#deleteInLucene里面,代码就不贴了。以上,就是一个完整的 ES delete by doc id 的执行流程。感兴趣的能够再细究。
这篇文章最后,详细介绍了DELET API的执行路径,其余操做也是相似的,按这个分析便可。 原文:https://www.cnblogs.com/hapjin/p/11018479.html