在k8s资源审计和计费这块,容器和虚机有很大区别。相对虚机来说,容器不容易实现。
资源指标收集能够采用heapster,也能够用prometheus。以前文章有介绍过,prometheus的存储的瓶颈和查询较大数据量,容易oom这两个问题。因此选择了heapster。此外,heapster不只内部实现了不少aggregator和calculator,作了不少聚合层的工做。而采用prometheus,你须要在查询的时候作聚合。
heapster支持诸多metrics输出,称为sink。目前支持的sink以下图:git
而我比较倾向于clickhouse数据库,关于clickhouse,其实前面的文章介绍过不少了。
因此本文主要讲如何为heapster增长clickhouse sink。github
看代码,增长一种sink仍是很简单的。典型的工厂设计模式,实现 Name,Stop,ExportData 接口方法便可。最后再提供一个初始化函数,供factory调用便可。golang
具体代码:sql
config, err := clickhouse_common.BuildConfig(uri) if err != nil { return nil, err } client, err := sql.Open("clickhouse", config.DSN) if err != nil { glog.Errorf("connecting to clickhouse: %v", err) return nil, err } sink := &clickhouseSink{ c: *config, client: client, conChan: make(chan struct{}, config.Concurrency), } glog.Infof("created clickhouse sink with options: host:%s user:%s db:%s", config.Host, config.UserName, config.Database) return sink, nil
基本上就是获取配置文件,初始化clickhouse 的client。docker
在factory.go 中 build方法中,加入刚刚实现的初始化函数数据库
func (this *SinkFactory) Build(uri flags.Uri) (core.DataSink, error) { switch uri.Key { case "elasticsearch": return elasticsearch.NewElasticSearchSink(&uri.Val) case "gcm": return gcm.CreateGCMSink(&uri.Val) case "stackdriver": return stackdriver.CreateStackdriverSink(&uri.Val) case "statsd": return statsd.NewStatsdSink(&uri.Val) case "graphite": return graphite.NewGraphiteSink(&uri.Val) case "hawkular": return hawkular.NewHawkularSink(&uri.Val) case "influxdb": return influxdb.CreateInfluxdbSink(&uri.Val) case "kafka": return kafka.NewKafkaSink(&uri.Val) case "librato": return librato.CreateLibratoSink(&uri.Val) case "log": return logsink.NewLogSink(), nil case "metric": return metricsink.NewMetricSink(140*time.Second, 15*time.Minute, []string{ core.MetricCpuUsageRate.MetricDescriptor.Name, core.MetricMemoryUsage.MetricDescriptor.Name}), nil case "opentsdb": return opentsdb.CreateOpenTSDBSink(&uri.Val) case "wavefront": return wavefront.NewWavefrontSink(&uri.Val) case "riemann": return riemann.CreateRiemannSink(&uri.Val) case "honeycomb": return honeycomb.NewHoneycombSink(&uri.Val) case "clickhouse": return clickhouse.NewClickhouseSink(&uri.Val) default: return nil, fmt.Errorf("Sink not recognized: %s", uri.Key) } }
func (sink *clickhouseSink) Name() string { return "clickhouse" } func (tsdbSink *clickhouseSink) Stop() { // Do nothing }
stop 函数在heapster关闭的时候调用,执行一些非托管资源的关闭。设计模式
这是核心的地方。并发
func (sink *clickhouseSink) ExportData(dataBatch *core.DataBatch) { sink.Lock() defer sink.Unlock() if err := sink.client.Ping(); err != nil { glog.Warningf("Failed to ping clickhouse: %v", err) return } dataPoints := make([]point, 0, 0) for _, metricSet := range dataBatch.MetricSets { for metricName, metricValue := range metricSet.MetricValues { var value float64 if core.ValueInt64 == metricValue.ValueType { value = float64(metricValue.IntValue) } else if core.ValueFloat == metricValue.ValueType { value = float64(metricValue.FloatValue) } else { continue } pt := point{ name: metricName, cluster: sink.c.ClusterName, val: value, ts: dataBatch.Timestamp, } for key, value := range metricSet.Labels { if _, exists := clickhouseBlacklistLabels[key]; !exists { if value != "" { if key == "labels" { lbs := strings.Split(value, ",") for _, lb := range lbs { ts := strings.Split(lb, ":") if len(ts) == 2 && ts[0] != "" && ts[1] != "" { pt.tags = append(pt.tags, fmt.Sprintf("%s=%s", ts[0], ts[1])) } } } else { pt.tags = append(pt.tags, fmt.Sprintf("%s=%s", key, value)) } } } } dataPoints = append(dataPoints, pt) if len(dataPoints) >= sink.c.BatchSize { sink.concurrentSendData(dataPoints) dataPoints = make([]point, 0, 0) } } } if len(dataPoints) >= 0 { sink.concurrentSendData(dataPoints) } sink.wg.Wait() }
主要有如下几个地方须要注意app
func (sink *clickhouseSink) concurrentSendData(dataPoints []point) { sink.wg.Add(1) // use the channel to block until there's less than the maximum number of concurrent requests running sink.conChan <- struct{}{} go func(dataPoints []point) { sink.sendData(dataPoints) }(dataPoints) }
这块在clickhouse.go中,主要作了获取配置参数和参数初始化一些默认值,以及对配置参数校验的工做。less
原来的基础镜像是基于scratch
FROM scratch COPY heapster eventer / COPY ca-certificates.crt /etc/ssl/certs/ # nobody:nobody USER 65534:65534 ENTRYPOINT ["/heapster"]
因为须要改timezone的问题,改为了基于alpine。
FROM alpine RUN apk add -U tzdata RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime COPY heapster eventer / COPY ca-certificates.crt /etc/ssl/certs/ RUN chmod +x /heapster ENTRYPOINT ["/heapster"]
实际上,基于scratch增长timezone而且更改,也能够作到,只不过须要装一些包指令,结果就是镜像变大。与其如此,不如基于我比较熟悉的alpine实现。
fork的项目地址。实际运行日志截图:
因为ck的出色的写入性能,运行很是稳定。