产生num个,均值为0.05,标准差为0.0001的正态分布随机数。数组
ran = np.random.normal(0.05, 0.0001, num)
计算沿指定轴的数据的第q个百分点。返回数组元素的第q个百分点。app
a1 = np.array([[10, 7, 4], [3, 2, 1]]) res1 = np.percentile(a1, 60, axis=1)
res1:
指定轴为横轴,取第60个百分点——4+(10-4)0.6=7.6,1+(3-1)0.6=2.2
output:dom
[7.6 2.2]
返回给定形状和类型的新数组,而无需初始化条目。函数
print(np.empty([10, 1], dtype=float)) print(np.empty(10, dtype=float))
output1:输出二维数组,10行1列code
[[1.37505327e-311] [6.95218360e-310] [1.37710552e-311] [1.37710552e-311] [1.37710860e-311] [1.37710552e-311] [1.37710552e-311] [1.37710836e-311] [0.00000000e+000] [0.00000000e+000]]
output2:输出一维数组orm
[1.37505327e-311 6.95218360e-310 1.37710552e-311 1.37710552e-311 1.37710860e-311 1.37710552e-311 1.37710552e-311 1.37710836e-311 0.00000000e+000 0.00000000e+000]
两个矩阵的相同位置的元素相乘,结果矩阵的shape等于输入矩阵的最大行列。当两个输入矩阵的行、列只有一个不相同时,输出矩阵的行列能够广播到最大的行列值(1.2,1.3);当行、列都不一样时,运行错误(1.4)。ip
alp = np.mat(np.ones((5,2))) lab = np.mat(([[-1,-3],[1,0],[2,1],[-1,0],[-3,-1]])) print("矩阵alp:\n%s \n 矩阵lab:\n%s" %(alp,lab)) np.multiply(alp,lab)
Output:get
# 矩阵alp: [[ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.]] # 矩阵lab: [[-1 -3] [ 1 0] [ 2 1] [-1 0] [-3 -1]] matrix([[-1., -3.], [ 1., 0.], [ 2., 1.], [-1., 0.], [-3., -1.]])
alp = np.mat(np.ones((5,2))) lab = np.mat(([[-1],[1],[2],[-1],[-3]])) print("矩阵alp:\n%s \n 矩阵lab:\n%s" %(alp,lab)) np.multiply(alp,lab)
Output:it
# 矩阵alp: [[ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.]] # 矩阵lab: [[-1] [ 1] [ 2] [-1] [-3]] matrix([[-1., -1.], [ 1., 1.], [ 2., 2.], [-1., -1.], [-3., -3.]])
alp = np.mat(np.ones((5,2))) lab = np.mat(([[-1,0]])) print("矩阵alp:\n%s \n 矩阵lab:\n%s" %(alp,lab)) np.multiply(alp,lab)
Output:ast
# 矩阵alp: [[ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.]] # 矩阵lab: [[-1 0]] matrix([[-1., 0.], [-1., 0.], [-1., 0.], [-1., 0.], [-1., 0.]])
alp = np.mat(np.ones((5,2))) lab = np.mat(([[-1],[1],[2],[-1]])) print("矩阵alp:\n%s \n 矩阵lab:\n%s" %(alp,lab)) np.multiply(alp,lab)
Output:
# 矩阵alp: [[ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.]] # 矩阵lab: [[-1] [ 1] [ 2] [-1]] ValueError: operands could not be broadcast together with shapes (5,2) (4,1)
将输入矩阵或列表顺序 随机 打乱。
import numpy as np if __name__ == "__main__": L = [1, 2, 3, 4 , 5, 6, 7, 8, 9] for i in range(5): # 打乱5次,结果随机 np.random.shuffle(L) print(L)
Output:
[7, 6, 9, 3, 2, 8, 1, 4, 5] [8, 9, 6, 2, 7, 1, 4, 3, 5] [3, 7, 2, 1, 5, 4, 6, 9, 8] [3, 6, 8, 7, 1, 2, 4, 5, 9] [5, 9, 1, 2, 3, 6, 8, 4, 7]
import numpy as np if __name__ == "__main__": R = [ [5, 3, 0, 1], [4, 0, 0, 1], [1, 1, 0, 5], [1, 0, 0, 4], [0, 1, 5, 4], ] for i in range(5): np.random.shuffle(R) print(R)
Output:
[[0, 1, 5, 4], [5, 3, 0, 1], [1, 0, 0, 4], [4, 0, 0, 1], [1, 1, 0, 5]] [[5, 3, 0, 1], [1, 1, 0, 5], [1, 0, 0, 4], [4, 0, 0, 1], [0, 1, 5, 4]] [[1, 1, 0, 5], [0, 1, 5, 4], [4, 0, 0, 1], [5, 3, 0, 1], [1, 0, 0, 4]] [[0, 1, 5, 4], [1, 1, 0, 5], [4, 0, 0, 1], [5, 3, 0, 1], [1, 0, 0, 4]] [[0, 1, 5, 4], [5, 3, 0, 1], [1, 0, 0, 4], [4, 0, 0, 1], [1, 1, 0, 5]] ## 当函数的输入是矩阵时,只打乱一个维度上的的顺序,如:
import numpy as np if __name__ == "__main__": M = [[[1, 2], [3, 4]], [[1, 3], [2, 4]], [[5, 6], [7, 8]]] for i in range(5): np.random.shuffle(M) print(M)
Output:
[[[5, 6], [7, 8]], [[1, 2], [3, 4]], [[1, 3], [2, 4]]] [[[5, 6], [7, 8]], [[1, 3], [2, 4]], [[1, 2], [3, 4]]] [[[5, 6], [7, 8]], [[1, 2], [3, 4]], [[1, 3], [2, 4]]] [[[1, 2], [3, 4]], [[1, 3], [2, 4]], [[5, 6], [7, 8]]] [[[1, 3], [2, 4]], [[5, 6], [7, 8]], [[1, 2], [3, 4]]]