看名字就知道很重要的网站php
https://paperswithcode.com/html
讲述Random Forest的好文章java
https://www.guru99.com/r-random-forest-tutorial.html#2python
R的特征工程git
http://www.shareditor.com/blogshow?blogId=106程序员
https://zhuanlan.zhihu.com/p/25732304github
设计模式面试
https://cloud.tencent.com/developer/article/1330380算法
机器学习的评估设计模式
http://www.javashuo.com/article/p-sqqodhsa-ke.html
数据仓库
http://www.javashuo.com/article/p-tnhnyinf-ca.html
https://www.jianshu.com/p/849db358ec61
https://www.jianshu.com/p/b635a3073e7b
算法
https://github.com/MisterBooo/LeetCodeAnimation
https://github.com/azl397985856/leetcode
tensorflow
http://www.elecfans.com/rengongzhineng/635154.html#http://bbs.elecfans.com
关于Lasso和岭回归
http://www.javashuo.com/article/p-mwrwndzg-hd.html
https://blog.csdn.net/JH_Zhai/article/details/82694937
Accnture
https://employeereferralprogram.accenture.com/#/index
http://www.blogjava.net/hh-lux/archive/2006/12/10/86635.html
https://blog.csdn.net/u010142437/article/details/26681213
特征工程
https://www.zhihu.com/question/29316149
http://www.cnblogs.com/jasonfreak/p/5448462.html
http://www.javashuo.com/article/p-cfovaxvj-ky.html
http://www.javashuo.com/article/p-gtevaphc-de.html
关于向量机的文章
https://blog.csdn.net/v_JULY_v/article/details/7624837
http://blog.pluskid.org/?page_id=683
关于PCA以及白化的好文章(一个英文版,一个中文版)
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B
PCA系列好文
https://blog.csdn.net/baimafujinji/article/details/50372906
https://blog.csdn.net/baimafujinji/article/details/50373143
https://blog.csdn.net/baimafujinji/article/details/79372911
BAT机器学习面试1000题
https://blog.csdn.net/v_JULY_v/article/details/78121924
关于YARN的fair
http://blog.cloudera.com/blog/2018/06/yarn-fairscheduler-preemption-deep-dive/
spark和es结合作聚类学习
https://code.i-harness.com/zh-CN/q/1b0ead4
争取天天读一篇的好博客,关于机器学习的
https://blog.csdn.net/lyl771857509/article/list/1?t=1
python-Levenshtein类似度(距离)计算
https://blog.csdn.net/dcrmg/article/details/79228589
https://github.com/xiashiwendao/Metis/tree/master/docs 织云开源网址,个人fork
写给程序员的数据挖掘
http://guidetodatamining.com/
特征工程
https://www.zhihu.com/question/29316149
Python机器学习实践与Kaggle实战
https://mlnote.wordpress.com/2015/12/16/python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5%E4%B8%8Ekaggle%E5%AE%9E%E6%88%98-machine-learning-for-kaggle-competition-in-python/
机器学习资源(持续更新)
https://blog.csdn.net/linxid/article/details/83865649
吴恩达视频笔记
https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes
https://study.163.com/course/courseMain.htm?courseId=1004570029&_trace_c_p_k2_=907d8e659c5e47d5939d46f4627d14bb
https://scikit-learn.org/stable/
华校专的我的网页
http://www.huaxiaozhuan.com/
关于时间序列
https://zhuanlan.zhihu.com/p/21781849
https://blog.csdn.net/shanguier/article/details/77575565
https://tsfresh.readthedocs.io/en/latest/
https://www.jianshu.com/p/4130bac8ebec 简书的一个ARIMA的例子
Apriori算法
https://www.cnblogs.com/90zeng/p/apriori.html
https://www.cnblogs.com/dm-cc/p/5737147.html
机器学习的好博客(apriori的python3实现就是在这里找到的)
https://adataanalyst.com/tag/machine-learning/
ELK
grok的模式解析库
https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns 或
https://github.com/thekrakken/java-grok/blob/master/src/main/resources/patterns/patterns
ELK面试题:https://mp.weixin.qq.com/s/iay2B4XGl5MuEqRBWqoipA
在线juypter
微软的
https://docs.microsoft.com/en-us/azure/notebooks/quickstart-create-share-jupyter-notebook
MyBinder
一篇介绍在线jupyter的简书文章