ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深入考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前全部已知的开源框架。基于 ncnn,开发者可以将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,每天P图等。html
基于神经网络计算的开源人脸检测java
基于神经网络计算的开源人脸识别android
mtcnn和facenet具体介绍能够google一下c++
修改build.gradle,添加ndk环境git
android {
.....
defaultConfig {
........
externalNativeBuild {
cmake {
arguments "-DANDROID_TOOLCHAIN=clang"
cFlags "-fopenmp -O2 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math "
cppFlags "-fopenmp -O2 -fvisibility=hidden -fvisibility-inlines-hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math "
arguments "-DANDROID_STL=c++_shared", "-DANDROID_CPP_FEATURES=rtti exceptions"
cppFlags ""
cppFlags "-std=c++11"
cppFlags "-frtti"
cppFlags "-fexceptions"
}
}
ndk {
abiFilters 'armeabi-v7a', 'arm64-v8a' //,'x86', 'x86_64', 'armeabi'
stl "gnustl_static"
}
}
compileOptions {
targetCompatibility JavaVersion.VERSION_1_8
sourceCompatibility JavaVersion.VERSION_1_8
}
........
externalNativeBuild {
cmake {
path "CMakeLists.txt"
version "3.10.2"
}
}
}
复制代码
而后在build.gradle的统计目录下添加CMakeLists.txtgithub
# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html
cmake_minimum_required(VERSION 3.4.1)
include_directories(src/main/cpp/opencv2
src/main/cpp/opencv
src/main/cpp/include
src/main/cpp/)
file(GLOB MTCNN_SRC src/main/cpp/*.h
src/main/cpp/*.cpp
src/main/cpp/mtcnn.cpp
src/main/cpp/mobilefacenet.cpp
src/main/cpp/mtcnn_jni.cpp)
set(MTCNN_COMPILE_CODE ${MTCNN_SRC})
add_library(mtcnn SHARED ${MTCNN_COMPILE_CODE})
add_library(libopencv_java3 SHARED IMPORTED)
set_target_properties(libopencv_java3 PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/jniLibs/${ANDROID_ABI}/libopencv_java3.so)
add_library(libncnn STATIC IMPORTED)
set_target_properties(libncnn
PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/jniLibs/${ANDROID_ABI}/libncnn.a)
find_library(log-lib log)
target_link_libraries(
mtcnn
libopencv_java3
libncnn
jnigraphics
z
${log-lib})
复制代码
在src的main文件夹下建立jniLibs,而后对应的ABI文件夹下添加libopencv_java3.so和libncnn.a算法
或者添加到其余位置,在build.gradle中指定jinLibs也是能够的bash
将模型文件*.bin,*.param,放入assets文件夹,而且经过java代码传入NDK中初始化。微信
最后写demo测试运行便可网络
在RK3288上测试能够达到20帧
代码地址:android_face_ncnn