[paper]DeepFool: a simple and accurate method to fool deep neural networks

本文目标是寻求最小的扰动来达到生成对抗样本的目标,因此提出了DeepFool的算法来生成扰动,并且提出了一种量化分类器鲁棒性的方法。 这是第一个通过计算出最小的必要扰动,并应用到对抗样本构建的方法,使用的限制扰动规模的方法是L2范数。最终得到的对抗样本效果要优于前面的FGSM和JSMA方法,但是这三者都需要比较大的计算资源。 根据样本 x x x,标签 k ^ ( x ) \hat{k}(x) k
相关文章
相关标签/搜索