图的广度优先和深度优先遍历(BFS和DFS)

图是一种灵活的数据结构,通常做为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则经过图的边(E)来表示。 图能够分为有向图和无向图,通常用G=(V,E)来表示图。常常用邻接矩阵或者邻接表来描述一副图。 在图的基本算法中,最初须要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。ios


广度优先搜索(BFS) 广度优先搜索在进一步遍历图中顶点以前,先访问当前顶点的全部邻接结点。 a .首先选择一个顶点做为起始结点,并将其染成灰色,其他结点为白色。 b. 将起始结点放入队列中。 c. 从队列首部选出一个顶点,并找出全部与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。若是顶点的颜色是灰色,表示已经发现而且放入了队列,若是顶点的颜色是白色,表示尚未发现 d. 按照一样的方法处理队列中的下一个结点。 基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。 用一副图来表达这个流程以下: 算法

1.初始状态,从顶点1开始,队列={1}
2.访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
3.访问2的邻接结点,2出队,4入队,队列={3,4}
4.访问3的邻接结点,3出队,队列={4}
5.访问4的邻接结点,4出队,队列={ 空}
从顶点1开始进行广度优先搜索:

  1. 初始状态,从顶点1开始,队列={1}
  2. 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
  3. 访问2的邻接结点,2出队,4入队,队列={3,4}
  4. 访问3的邻接结点,3出队,队列={4}
  5. 访问4的邻接结点,4出队,队列={ 空} 结点5对于1来讲不可达。 上面的图能够经过以下邻接矩阵表示:
int maze[5][5] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 1, 0 },
	{ 0, 1, 1, 1, 0 },
	{ 1, 0, 0, 0, 0 },
	{ 0, 0, 1, 1, 0 }
};

复制代码

BFS核心代码以下:bash

#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 1, 0 },
	{ 0, 1, 1, 1, 0 },
	{ 1, 0, 0, 0, 0 },
	{ 0, 0, 1, 1, 0 }
};
int visited[N + 1] = { 0, };
void BFS(int start)
{
	queue<int> Q;
	Q.push(start);
	visited[start] = 1;
	while (!Q.empty())
	{
		int front = Q.front();
		cout << front << " ";
		Q.pop();
		for (int i = 1; i <= N; i++)
		{
			if (!visited[i] && maze[front - 1][i - 1] == 1)
			{
				visited[i] = 1;
				Q.push(i);
			}
		}
	}
}
int main()
{
	for (int i = 1; i <= N; i++)
	{
		if (visited[i] == 1)
			continue;
		BFS(i);
	}
	return 0;
}
复制代码

深度优先搜索(DFS) 深度优先搜索在搜索过程当中访问某个顶点后,须要递归地访问此顶点的全部未访问过的相邻顶点。 初始条件下全部节点为白色,选择一个做为起始顶点,按照以下步骤遍历: a. 选择起始顶点涂成灰色,表示还未访问 b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深刻下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了 c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其他邻接结点,继续如上操做,若是全部邻接结点往下都访问过了,就把本身涂黑,再回溯到更上一层。 d. 上一层继续作如上操做,知道全部顶点都访问过。 用图能够更清楚的表达这个过程: 数据结构

1.初始状态,从顶点1开始
2.依次访问过顶点1,2,3后,终止于顶点3
3.从顶点3回溯到顶点2,继续访问顶点5,而且终止于顶点5
4.从顶点5回溯到顶点2,而且终止于顶点2
5.从顶点2回溯到顶点1,并终止于顶点1
6.从顶点4开始访问,并终止于顶点4
从顶点1开始作深度搜索:

  1. 初始状态,从顶点1开始
  2. 依次访问过顶点1,2,3后,终止于顶点3
  3. 从顶点3回溯到顶点2,继续访问顶点5,而且终止于顶点5
  4. 从顶点5回溯到顶点2,而且终止于顶点2
  5. 从顶点2回溯到顶点1,并终止于顶点1
  6. 从顶点4开始访问,并终止于顶点4

上面的图能够经过以下邻接矩阵表示:ui

int maze[5][5] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 0, 1 },
	{ 0, 0, 1, 0, 0 },
	{ 1, 1, 0, 0, 1 },
	{ 0, 0, 1, 0, 0 }
};
复制代码

DFS核心代码以下(递归实现):spa

#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 0, 1 },
	{ 0, 0, 1, 0, 0 },
	{ 1, 1, 0, 0, 1 },
	{ 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
	visited[start] = 1;
	for (int i = 1; i <= N; i++)
	{
		if (!visited[i] && maze[start - 1][i - 1] == 1)
			DFS(i);
	}
	cout << start << " ";
}
int main()
{
	for (int i = 1; i <= N; i++)
	{
		if (visited[i] == 1)
			continue;
		DFS(i);
	}
	return 0;
}
复制代码

非递归实现以下,借助一个栈:code

#include <iostream>
#include <stack>
#define N 5
using namespace std;
int maze[N][N] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 0, 1 },
	{ 0, 0, 1, 0, 0 },
	{ 1, 1, 0, 0, 1 },
	{ 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
	stack<int> s;
	s.push(start);
	visited[start] = 1;
	bool is_push = false;
	while (!s.empty())
	{
		is_push = false;
		int v = s.top();
		for (int i = 1; i <= N; i++)
		{
			if (maze[v - 1][i - 1] == 1 && !visited[i])
			{
				visited[i] = 1;
				s.push(i);
				is_push = true;
				break;
			}
		}
		if (!is_push)
		{
			cout << v << " ";
			s.pop();
		}

	}
}
int main()
{
	for (int i = 1; i <= N; i++)
	{
		if (visited[i] == 1)
			continue;
		DFS(i);
	}
	return 0;
}
复制代码

有的DFS是先访问读取到的结点,等回溯时就再也不输出该结点,也是能够的。算法和我上面的区别就是输出点的时机不一样,思想仍是同样的。DFS在环监测和拓扑排序中都有不错的应用。cdn

PS: 图文均为本人原创,画了好几个小时,转载注明出处,尊重知识劳动,谢谢~对象

相关文章
相关标签/搜索