JavaShuo
栏目
标签
关于The Limitations of Deep Learning in Adversarial Settings的理解
时间 2020-12-29
标签
对抗样本
繁體版
原文
原文链接
与之前的基于提高原始类别标记的损失函数或者降低目标类别标记的损失函数的方式不同,这篇文章提出直接增加神经网络对目标类别的预测值。换句话说,之前的对抗样本的扰动方向都是损失函数的梯度方向(无论是原始类别标记的损失函数还是目标类别标记的损失函数),该论文生成的对抗样本的扰动方向是目标类别标记的预测值的梯度方向,作者将这个梯度称为前向梯度(forward derivative)。即: ∇F(X)=∂F
>>阅读原文<<
相关文章
1.
[paper]The Limitations of Deep Learning in Adversarial Settings(JSMA)
2.
The Limitations of Deep Learning in Adversarial Settings
3.
对The Limitations of Deep Learning in Adversarial Settings理解
4.
【论文回顾】The Limitations of Deep Learning in Adversarial Settings
5.
The Limitations of Deep Learning in Adversarial Settings论文笔记
6.
Exploring the teaching of deep learning in neural networks
7.
[论文解读]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
8.
Application of deep learning in Industrial area
9.
The Rise of Meta Learning
10.
[转载][paper]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
更多相关文章...
•
MyBatis settings
-
MyBatis教程
•
Swift for-in 循环
-
Swift 教程
•
☆基于Java Instrument的Agent实现
•
NewSQL-TiDB相关
相关标签/搜索
Deep Learning
adversarial
settings
limitations
learning
deep
关于
我的理解
理解
for...of
NoSQL教程
MySQL教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Appium入门
2.
Spring WebFlux 源码分析(2)-Netty 服务器启动服务流程 --TBD
3.
wxpython入门第六步(高级组件)
4.
CentOS7.5安装SVN和可视化管理工具iF.SVNAdmin
5.
jedis 3.0.1中JedisPoolConfig对象缺少setMaxIdle、setMaxWaitMillis等方法,问题记录
6.
一步一图一代码,一定要让你真正彻底明白红黑树
7.
2018-04-12—(重点)源码角度分析Handler运行原理
8.
Spring AOP源码详细解析
9.
Spring Cloud(1)
10.
python简单爬去油价信息发送到公众号
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
[paper]The Limitations of Deep Learning in Adversarial Settings(JSMA)
2.
The Limitations of Deep Learning in Adversarial Settings
3.
对The Limitations of Deep Learning in Adversarial Settings理解
4.
【论文回顾】The Limitations of Deep Learning in Adversarial Settings
5.
The Limitations of Deep Learning in Adversarial Settings论文笔记
6.
Exploring the teaching of deep learning in neural networks
7.
[论文解读]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
8.
Application of deep learning in Industrial area
9.
The Rise of Meta Learning
10.
[转载][paper]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
>>更多相关文章<<