JavaShuo
栏目
标签
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
时间 2020-12-20
原文
原文链接
摘要 作者提出了一种只使用整数运算的quantization方式,比起float point运算效率更高。同时提出了一种相应的训练方式来保证quantization之后的准确率。这篇文章的方法提升了accuracy和on-device latency之间的trade off,并且可以在MobileNets上使用。 1 introduction 作者总结了目前有效将庞大的神经网络应用在资源更为有限的
>>阅读原文<<
相关文章
1.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
2.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Bag of Freebies for Training Object Detection Neural Networks
5.
(转)A Recipe for Training Neural Networks
6.
STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS
7.
Domain-Adversarial Training of Neural Networks
8.
DANN:Domain-Adversarial Training of Neural Networks
9.
Weighted-Entropy-based Quantization for Deep Neural Networks
10.
Strategies For Pre-Training Graph Neural Networks
更多相关文章...
•
Scala for循环
-
Scala教程
•
Swift for 循环
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
Kotlin学习(二)基本类型
相关标签/搜索
for...of
for..of
networks
inference
quantization
neural
training
flink training
action.....and
between...and
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github并且新建仓库push代码,从已有仓库clone代码,并且push
3.
设计模式9——模板方法模式
4.
avue crud form组件的快速配置使用方法详细讲解
5.
python基础B
6.
从零开始···将工程上传到github
7.
Eclipse插件篇
8.
Oracle网络服务 独立监听的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目录管理命令基础
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
2.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Bag of Freebies for Training Object Detection Neural Networks
5.
(转)A Recipe for Training Neural Networks
6.
STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS
7.
Domain-Adversarial Training of Neural Networks
8.
DANN:Domain-Adversarial Training of Neural Networks
9.
Weighted-Entropy-based Quantization for Deep Neural Networks
10.
Strategies For Pre-Training Graph Neural Networks
>>更多相关文章<<