JavaShuo
栏目
标签
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
时间 2020-12-20
原文
原文链接
摘要 作者提出了一种只使用整数运算的quantization方式,比起float point运算效率更高。同时提出了一种相应的训练方式来保证quantization之后的准确率。这篇文章的方法提升了accuracy和on-device latency之间的trade off,并且可以在MobileNets上使用。 1 introduction 作者总结了目前有效将庞大的神经网络应用在资源更为有限的
>>阅读原文<<
相关文章
1.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
2.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Bag of Freebies for Training Object Detection Neural Networks
5.
(转)A Recipe for Training Neural Networks
6.
STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS
7.
Domain-Adversarial Training of Neural Networks
8.
DANN:Domain-Adversarial Training of Neural Networks
9.
Weighted-Entropy-based Quantization for Deep Neural Networks
10.
Strategies For Pre-Training Graph Neural Networks
更多相关文章...
•
Scala for循环
-
Scala教程
•
Swift for 循环
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
Kotlin学习(二)基本类型
相关标签/搜索
for...of
for..of
networks
inference
quantization
neural
training
flink training
action.....and
between...and
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
在windows下的虚拟机中,安装华为电脑的deepin操作系统
2.
强烈推荐款下载不限速解析神器
3.
【区块链技术】孙宇晨:区块链技术带来金融服务的信任变革
4.
搜索引起的链接分析-计算网页的重要性
5.
TiDB x 微众银行 | 耗时降低 58%,分布式架构助力实现普惠金融
6.
《数字孪生体技术白皮书》重磅发布(附完整版下载)
7.
双十一“避坑”指南:区块链电子合同为电商交易保驾护航!
8.
区块链产业,怎样“链”住未来?
9.
OpenglRipper使用教程
10.
springcloud请求一次好用一次不好用zuul Name or service not known
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
2.
【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Bag of Freebies for Training Object Detection Neural Networks
5.
(转)A Recipe for Training Neural Networks
6.
STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS
7.
Domain-Adversarial Training of Neural Networks
8.
DANN:Domain-Adversarial Training of Neural Networks
9.
Weighted-Entropy-based Quantization for Deep Neural Networks
10.
Strategies For Pre-Training Graph Neural Networks
>>更多相关文章<<