There are a total of n courses you have to take, labeled from 0
to n-1
.html
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
git
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?github
Example 1:express
Input: 2, [[1,0]] Output: true Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
Example 2:数组
Input: 2, [[1,0],[0,1]] Output: false Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:数据结构
这道课程清单的问题对于咱们学生来讲应该不陌生,由于咱们在选课的时候常常会遇到想选某一门课程,发现选它以前必须先上了哪些课程,这道题给了不少提示,第一条就告诉咱们了这道题的本质就是在有向图中检测环。 LeetCode 中关于图的题不多,有向图的仅此一道,还有一道关于无向图的题是 Clone Graph。我的认为图这种数据结构相比于树啊,链表啊什么的要更为复杂一些,尤为是有向图,很麻烦。第二条提示是在讲如何来表示一个有向图,能够用边来表示,边是由两个端点组成的,用两个点来表示边。第三第四条提示揭示了此题有两种解法,DFS 和 BFS 均可以解此题。咱们先来看 BFS 的解法,咱们定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每一个顶点的入度。咱们开始先根据输入来创建这个有向图,并将入度数组也初始化好。而后咱们定义一个 queue 变量,将全部入度为0的点放入队列中,而后开始遍历队列,从 graph 里遍历其链接的点,每到达一个新节点,将其入度减一,若是此时该点入度为0,则放入队列末尾。直到遍历完队列中全部的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码以下:app
解法一:ide
class Solution { public: bool canFinish(int numCourses, vector<vector<int>>& prerequisites) { vector<vector<int>> graph(numCourses, vector<int>()); vector<int> in(numCourses); for (auto a : prerequisites) { graph[a[1]].push_back(a[0]); ++in[a[0]]; } queue<int> q; for (int i = 0; i < numCourses; ++i) { if (in[i] == 0) q.push(i); } while (!q.empty()) { int t = q.front(); q.pop(); for (auto a : graph[t]) { --in[a]; if (in[a] == 0) q.push(a); } } for (int i = 0; i < numCourses; ++i) { if (in[i] != 0) return false; } return true; } };
下面咱们来看 DFS 的解法,也须要创建有向图,仍是用二维数组来创建,和 BFS 不一样的是,咱们像如今须要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大致思路是,先创建好有向图,而后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,而后对新获得的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,而后把标记为已访问的课程改成未访问。代码以下:post
解法二:ui
class Solution { public: bool canFinish(int numCourses, vector<vector<int>>& prerequisites) { vector<vector<int>> graph(numCourses, vector<int>()); vector<int> visit(numCourses); for (auto a : prerequisites) { graph[a[1]].push_back(a[0]); } for (int i = 0; i < numCourses; ++i) { if (!canFinishDFS(graph, visit, i)) return false; } return true; } bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) { if (visit[i] == -1) return false; if (visit[i] == 1) return true; visit[i] = -1; for (auto a : graph[i]) { if (!canFinishDFS(graph, visit, a)) return false; } visit[i] = 1; return true; } };
Github 同步地址:
https://github.com/grandyang/leetcode/issues/207
相似题目:
参考资料:
https://leetcode.com/problems/course-schedule/
https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution
https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java