做者:Bo Wang1,2, Shuang Qiu2, and Huiguang He1,2,3ide
目的:Retinal Vessel Segmentation is an essential step for the early diagnosis of eye-related diseases, such as diabetes and hypertension. Segmentation of blood vessels requires both sizeable receptive field and rich spatial information.ui
方法:Dual Encoding U-Net (DEU-Net), 空间information和上下文informationgoogle

该结构图outputpatches居然和input同样。spa
- Spatial Path,连续四个卷积,用了大stride:7,12,9,6.参考了Large kernel matters-improve semantic segmentation by global convolutional network., CVPR2017。
- Context Path,就是inception block,google提出的

- Attention Skip Module,最简单的attention方式处理

- Feature Fusion Module,这个方式我看到过,不知道为何叫作feature fusion,其实连结处就是和attention residual for image classification那篇文章同样.

- Multiscale Predict Module,这个模块没看到过,主要是pixel shuffle(参考CVPR2016 Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network)这个操做。
试验结果:略orm