最近都在说AQS,因为手头有地方要实现一个自旋分布式锁,就不得不说一下ReentrantLock的AQS了,有关锁的通常特性能够参考线程,JVM锁整理 java
AQS的全称为AbstractQueuedSynchronizer,抽象队列同步器web
在ReentrantLock类中,咱们来看一下加锁是怎么来实现的。redis
private final Sync sync;
public void lock() { sync.lock(); }
这个sync就是一个AQS的子类,而且是一个抽象类websocket
abstract static class Sync extends AbstractQueuedSynchronizer
它的lock()方法是一个抽象方法多线程
abstract void lock();
具体实现sync的是两个子类,公平锁类socket
static final class FairSync extends Sync
和非公平锁类分布式
static final class NonfairSync extends Sync
这里咱们主要以非公平锁来讲明,由于咱们日常用的大部分都是非公平锁,在非公平锁中,lock()方法的实现以下ide
final void lock() { //AQS的内部方法,无锁竞争AQS中state的状态,state的初始值为0,得到锁的将0变为1 if (compareAndSetState(0, 1)) //竞争到state为1的将当前线程设为AQS的独家主线程 setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); }
在AbstractQueuedSynchronizer类中测试
private static final long stateOffset;
在静态代码块中,咱们能够看到这个stateOffset取的就是state,而且这个state是多线程可见的volatile。ui
stateOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
private volatile int state;
protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }
private transient Thread exclusiveOwnerThread;
protected final void setExclusiveOwnerThread(Thread thread) { exclusiveOwnerThread = thread; }
这里unsafe.compareAndSwapInt()是用C来实现的,咱们能够用java来模拟该方法
@Slf4j @Getter public class GetState { private AtomicReference<Integer> state = new AtomicReference<>(0); private boolean lockState() { while (true) { if (state.compareAndSet(0,1)) { return true; } } } private void unlockState() { state.set(0); } @AllArgsConstructor private static class Task implements Runnable { private GetState getState; @Override public void run() { if (getState.lockState()) { log.info(Thread.currentThread().getName() + "获取锁"); } } } public static void main(String[] args) throws InterruptedException { ExecutorService service = Executors.newFixedThreadPool(16); GetState state = new GetState(); for (int i = 0;i < 10;i++) { service.execute(new Task(state)); } while (state.getState().get() == 1) { Thread.sleep(1000); state.unlockState(); } service.shutdown(); } }
打印日志(每秒打印一条)
15:35:42.953 [pool-1-thread-1] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-1获取锁
15:35:43.953 [pool-1-thread-9] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-9获取锁
15:35:44.957 [pool-1-thread-5] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-5获取锁
15:35:45.962 [pool-1-thread-2] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-2获取锁
15:35:46.962 [pool-1-thread-7] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-7获取锁
15:35:47.962 [pool-1-thread-3] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-3获取锁
15:35:48.967 [pool-1-thread-8] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-8获取锁
15:35:49.969 [pool-1-thread-6] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-6获取锁
15:35:50.970 [pool-1-thread-4] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-4获取锁
15:35:51.971 [pool-1-thread-10] INFO com.guanjian.websocket.tomic.GetState - pool-1-thread-10获取锁
Process finished with exit code 0
如今咱们能够来写一个支持自旋的分布式锁了。
public class SpinDistributedLock { private volatile AtomicReference<Boolean> state = new AtomicReference<>(false); public boolean lock(RedisService redisService,String key,String value,int expire) { while (true) { if (state.compareAndSet(false, RedisTool.tryGetDistributedLock(redisService,key,value,expire))) { if (state.get()) { return true; } } } } public void unlock(RedisService redisService,String key,String value) { state.set(!RedisTool.releaseDistributedLock(redisService,key,value)); } }
常规分布式锁能够参考采用redis token,分布式锁的接口幂等性实现
如今咱们来进行一个简单的测试,先不使用分布式锁
咱们在redis中手动设置一个键count,0
127.0.0.1:6379> set count 0
OK
咱们的目的是累加这个count,但不能让其超过10
@Service public class NoDistributedTest { @Autowired private RedisService redisService; private class Task implements Runnable { @Override public void run() { if (Integer.valueOf(redisService.get("count")) < 10) { redisService.incr("count"); } } } @PostConstruct public void test() { ExecutorService service = Executors.newFixedThreadPool(16); for (int i = 0;i < 100000;i++) { service.execute(new Task()); } service.shutdown(); } }
咱们启动两个进程,两个进程启动完成后,咱们再来看一下该键的值。
127.0.0.1:6379> get count
"15"
这个时候咱们能够看到,在没有锁的状况下,数量超过了10.
如今用分布式锁来进行测试。
将count键从新设为0
127.0.0.1:6379> set count 0
OK
@Slf4j @Service public class DistributedTest { private SpinDistributedLock lock = new SpinDistributedLock(); @Autowired private RedisService redisService; private class Task implements Runnable { @Override public void run() { try { lock.lock(redisService,"countlock","countlock",3); log.info(Thread.currentThread().getName() + "进入锁"); if (Integer.valueOf(redisService.get("count")) < 10) { redisService.incr("count"); } } finally { lock.unlock(redisService,"countlock","countlock"); log.info(Thread.currentThread().getName() + "释放锁"); } } } @PostConstruct public void test() { ExecutorService service = Executors.newFixedThreadPool(16); for (int i = 0;i < 100000;i++) { service.execute(new Task()); } service.shutdown(); } }
一样启动两个进程或者更多进程,启动完成后,咱们来看一下count键的值
127.0.0.1:6379> get count
"10"
根据两个进程的日志也能够看到,两个进程会分别获取锁以及释放锁,但只有一个进程能在一个时间点内拿到分布式锁。
可是如今已经符合了咱们的需求,不让其累加超过10.