Zookeeper系列二:分布式架构详解、分布式技术详解、分布式事务

1、分布式架构详解

一、分布式发展历程

1.1 单点集中式

特色:App、DB、FileServer都部署在一台机器上。而且访问请求量较少算法

1.2  应用服务和数据服务拆分

 特色:App、DB、FileServer分别部署在独立服务器上。而且访问请求量较少数据库

1.3  使用缓存改善性能

 特色:数据库中频繁访问的数据存储在缓存服务器中,减小数据库的访问次数,下降数据库的压力promise

 

1.4 应用服务器集群

 特色:多台应用服务器经过负载均衡同时对外提供服务,解决单台服务器处理能力上限的问题缓存

 

1.5 数据库读写分离

 特色:数据库进行读写分离(主从)设计,解决数据库的处理压力服务器

 

1.6 反向代理和CDN加速

 特色:采用反向代理和CDN加快系统的访问速度网络

 

1.7 分布式文件系统和分布式数据库

 特色:数据库采用分布式数据库,文件系统采用分布式文件系统数据结构

随着业务的发展,最终数据库读写分离也将没法知足需求,须要采用分布式数据库和分布式文件系统来支撑架构

分布式数据库是数据库拆分后的最后方法,只有在单表规模很是庞大的时候才使用,更经常使用的数据库拆分手段是业务分库,将不一样业务的数据库部署在不一样的机器上并发

 

2、 分布式技术详解

1. 并发性

2. 分布性

  大任务拆分红多个任务部署到多台机器上对外提供服务负载均衡

3. 缺少全局时钟  

  时间要统一

4. 对等性

  一个服务部署在多台机器上是同样的,无任何差异

5. 故障确定会发生

   硬盘坏了 CPU烧了....

3、分布式事务

1. ACID

原子性(Atomicity):一个事务(transaction)中的全部操做,要么所有完成,要么所有不完成,不会结束在中间某个环节。事务在执行过程当中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务历来没有执行过同样。
一致性(Consistency):在事务开始以前和事务结束之后,数据库的完整性没有被破坏。这表示写入的资料必须彻底符合全部的预设规则,这包含资料的精确度、串联性以及后续数据库能够自发性地完成预约的工做。

             好比A有500元,B有300元,A向B转帐100,不管怎么样,A和B的总和老是800元
隔离性(Isolation):数据库容许多个并发事务同时对其数据进行读写和修改的能力,隔离性能够防止多个事务并发执行时因为交叉执行而致使数据的不一致。事务隔离分为不一样级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。
持久性(Durability):事务处理结束后,对数据的修改就是永久的,即使系统故障也不会丢失。

2. 2P/3P

2P= Two Phase commit   二段提交(RDBMS(关系型数据库管理系统)常常就是这种机制,保证强一致性)

3P= Three Phase commit  三段提交

说明:2P/3P是为了保证事务的ACID(原子性、一致性、隔离性、持久性)

2.1 2P的两个阶段

阶段1:提交事务请求(投票阶段)询问是否能够提交事务

阶段2:执行事务提交(commit、rollback) 真正的提交事务

 

2.2 3P的三个阶段

阶段1:是否提交-询问是否能够作事务提交
阶段2:预先提交-预先提交事务
阶段3:执行事务提交(commit、rollback)真正的提交事务

 

说明:3P把2P的阶段一拆分红了前面两个阶段

3. CAP理论

一致性(Consistency):分布式数据库的数据保持一致

可用性(Availability):任何一个节点挂了,其余节点能够继续对外提供服务

分区容错性(网络分区)Partition tolerance:一个数据库所在的机器坏了,如硬盘坏了,数据丢失了,能够新增一台机器,而后从其余正常的机器把备份的数据同步过来

CAP理论的特色:CAP只能知足其中2条

CA(放弃P):将全部的数据放在一个节点。知足一致性、可用性。
AP(放弃C):放弃强一致性,用最终一致性来保证。
CP(放弃A):一旦系统碰见故障,受到影响的服务器须要等待一段时间,在恢复期间没法对外提供服务。

举例说明CAP理论:

有3台机器分别有3个数据库分别有两张表,数据都是同样的
Machine1-db1-tbl_person、tbl_order
Machine2-db2-tbl_person、tbl_order
Machine3-db3-tbl_person、tbl_order
1)当向machine1的db1的表tbl_person、tbl_order插入数数据时,同时要把插入的数据同步到machine二、machine3,这就是一致性
2)当其中的一台机器宕机了,能够继续对外提供服务,把宕机的机器从新启动起来能够继续服务,这就是可用性
3)当machine1的机器坏了,数据所有丢失了,不会有任何问题,由于machine2和machine3上还有数据,从新加一台机器machine4,把machine2和machine3其中一台机器的备份数据同步过来就能够了,这就是分区容错性

4. BASE理论

基本可用(bascially available)、软状态(soft state)、最终一致性(Eventually consistent)
基本可用:在分布式系统出现故障,容许损失部分可用性(服务降级、页面降级)
软状态:容许分布式系统出现中间状态。并且中间状态不影响系统的可用性。
    这里的中间状态是指不一样的data replication之间的数据更新能够出现延时的最终一致性
    如CAP理论里面的示例,当向machine1的db1的表tbl_person、tbl_order插入数数据时,同时要把插入的数据同步到machine二、machine3,当machine3的网络有问题时,同步失败,可是过一会网络恢复了就同步成功了,这个同步失败的状态就称为软状态,由于最终仍是同步成功了。
最终一致性:data replications通过一段时间达到一致性。

5. Paxos算法

5.1 介绍Paxos算法以前咱们先来看一个小故事

拜占庭将军问题

  拜占庭帝国就是5~15世纪的东罗马帝国,拜占庭即如今土耳其的伊斯坦布尔。咱们能够想象,拜占庭军队有许多分支,驻扎在敌人城外,每一分支由各自的将军指挥。假设有11位将军,将军们只能靠通信员进行通信。在观察敌人之后,忠诚的将军们必须制订一个统一的行动计划——进攻或者撤退。然而,这些将军里有叛徒,他们不但愿忠诚的将军们能达成一致,于是影响统一行动计划的制订与传播。
  问题是:将军们必须有一个协议,使全部忠诚的将军们可以达成一致,并且少数几个叛徒不能使忠诚的将军们做出错误的计划——使有些将军进攻而另外一些将军撤退。
  假设有9位忠诚的将军,5位判断进攻,4位判断撤退,还有2个间谍恶意判断撤退,虽然结果是错误的撤退,但这种状况彻底是容许的。由于这11位将军依然保持着状态一致性。

总结:
1)11位将军进攻城池
2)同时进攻(议案、决议)、同时撤退(议案、决议)
3)无论撤退仍是进攻,必须半数的将军统一意见才能够执行
4)将军里面有叛徒,会干扰决议生成

5.2 下面就来介绍一下Paxos算法

Google Chubby的做者Mike Burrows说过这个世界上只有一种一致性算法,那就是Paxos,其它的算法都是残次品。 

Paxos:多数派决议(最终解决一致性问题)

Paxos算法有三种角色:Proposer,Acceptor,Learner

Proposer:提交者(议案提交者)

          提交议案(判断是否过半),提交批准议案(判断是否过半)

Acceptor:接收者(议案接收者)

          接受议案或者驳回议案,给proposer回应(promise)

Learner:学习者(打酱油的)

         若是议案产生,学习议案。

设定1:若是Acceptor没有接受议案,那么他必须接受第一个议案

设定2:每一个议案必须有一个编号,而且编号只能增加,不能重复。越日后越大。

设定3:接受编号大的议案,若是小于以前接受议案编号,那么不接受

设定4:议案有2种(提交的议案,批准的议案)

1)Prepare阶段(议案提交)

a)Proposer但愿议案V。首先发出Prepare请求至大多数Acceptor。Prepare请求内容为序列号K

b)Acceptor收到Prepare请求为编号K后,检查本身手里是否有处理过Prepare请求。

c)若是Acceptor没有接受过任何Prepare请求,那么用OK来回复Proposer,表明Acceptor必须接受收到的第一个议案(设定1

d)不然,若是Acceptor以前接受过任何Prepare请求(如:MaxN),那么比较议案编号,若是K<MaxN,则用reject或者error回复Proposer

e)若是K>=MaxN,那么检查以前是否有批准的议案,若是没有则用OK来回复Proposer,并记录K

f)若是K>=MaxN,那么检查以前是否有批准的议案,若是有则回复批准的议案编号和议案内容(如:<AcceptN, AcceptV>, AcceptN为批准的议案编号,AcceptV为批准的议案内容)

2)Accept阶段(批准阶段)

a)Proposer收到过半Acceptor发来的回复,回复都是OK,且没有附带任何批准过的议案编号和议案内容。那么Proposer继续提交批准请求,不过此时会连议案编号K和议案内容V一块儿提交(<K, V>这种数据形式)

b)Proposer收到过半Acceptor发来的回复,回复都是OK,且附带批准过的议案编号和议案内容(<pok,议案编号,议案内容>)。那么Proposer找到全部回复中超过半数的那个(假设为<pok,AcceptNx,AcceptVx>)做为提交批准请求(请求为<K,AcceptVx>)发送给Acceptor。

c)Proposer没有收到过半Acceptor发来的回复,则修改议案编号K为K+1,并将编号从新发送给Acceptors(重复Prepare阶段的过程)

d)Acceptor收到Proposer发来的Accept请求,若是编号K<MaxN则不回应或者reject。

e)Acceptor收到Proposer发来的Accept请求,若是编号K>=MaxN则批准该议案,并设置手里批准的议案为<K,接受议案的编号,接受议案的内容>,回复Proposer。

f)通过一段时间Proposer对比手里收到的Accept回复,若是超过半数,则结束流程(表明议案被批准),同时通知Leaner能够学习议案。

g) 通过一段时间Proposer对比手里收到的Accept回复,若是未超过半数,则修改议案编号从新进入Prepare阶段。

5.3 Paxos示例

示例1:前后提议的场景

 

角色:

proposer:参谋1,参谋2

acceptor:将军1,将军2,将军3(决策者)

1)参谋1发起提议,派通讯兵带信给3个将军,内容为(编号1);
2)3个将军收到参谋1的提议,因为以前尚未保存任何编号,所以把(编号1)保存下来,避免遗忘;同时让通讯兵带信回去,内容为(ok);
3)参谋1收到至少2个将军的回复,再次派通讯兵带信给3个将军,内容为(编号1,进攻时间1);
4)3个将军收到参谋1的时间,把(编号1,进攻时间1)保存下来,避免遗忘;同时让通讯兵带信回去,内容为(Accepted);
5)参谋1收到至少2个将军的(Accepted)内容,确认进攻时间已经被你们接收;
6)参谋2发起提议,派通讯兵带信给3个将军,内容为(编号2);
7)3个将军收到参谋2的提议,因为(编号2)比(编号1)大,所以把(编号2)保存下来,避免遗忘;又因为以前已经接受参谋1的提议,所以让通讯兵带信回去,内容为(编 号1,进攻时间1);
8)参谋2收到至少2个将军的回复,因为回复中带来了已接受的参谋1的提议内容,参谋2所以再也不提出新的进攻时间,接受参谋1提出的时间;

示例2:交叉场景

 

角色:

proposer:参谋1,参谋2

acceptor:将军1,将军2,将军3(决策者)

1)参谋1发起提议,派通讯兵带信给3个将军,内容为(编号1);

2)3个将军的状况以下
  a)将军1和将军2收到参谋1的提议,将军1和将军2把(编号1)记录下来,若是有其余参谋提出更小的编号,将被拒绝;同时让通讯兵带信回去,内容为(ok);
  b)负责通知将军3的通讯兵被抓,所以将军3没收到参谋1的提议;

3)参谋2在同一时间也发起了提议,派通讯兵带信给3个将军,内容为(编号2);
4)3个将军的状况以下
  a)将军2和将军3收到参谋2的提议,将军2和将军3把(编号2)记录下来,若是有其余参谋提出更小的编号,将被拒绝;同时让通讯兵带信回去,内容为(ok);
  b)负责通知将军1的通讯兵被抓,所以将军1没收到参谋2的提议;
5)参谋1收到至少2个将军的回复,再次派通讯兵带信给有答复的2个将军,内容为(编号1,进攻时间1);
6)2个将军的状况以下
  a)将军1收到了(编号1,进攻时间1),和本身保存的编号相同,所以把(编号1,进攻时间1)保存下来;同时让通讯兵带信回去,内容为(Accepted);
  b)将军2收到了(编号1,进攻时间1),因为(编号1)小于已经保存的(编号2),所以让通讯兵带信回去,内容为(Rejected,编号2);
7)参谋2收到至少2个将军的回复,再次派通讯兵带信给有答复的2个将军,内容为(编号2,进攻时间2);
8)将军2和将军3收到了(编号2,进攻时间2),和本身保存的编号相同,所以把(编号2,进攻时间2)保存下来,同时让通讯兵带信回去,内容为(Accepted);
9)参谋2收到至少2个将军的(Accepted)内容,确认进攻时间已经被多数派接受;

10)参谋1只收到了1个将军的(Accepted)内容,同时收到一个(Rejected,编号2);参谋1从新发起提议,派通讯兵带信给3个将军,内容为(编号3);

11)3个将军的状况以下
  a)将军1收到参谋1的提议,因为(编号3)大于以前保存的(编号1),所以把(编号3)保存下来;因为将军1已经接受参谋1前一次的提议,所以让通讯兵带信回去,内容为(编号1,进攻时间1);
  b)将军2收到参谋1的提议,因为(编号3)大于以前保存的(编号2),所以把(编号3)保存下来;因为将军2已经接受参谋2的提议,所以让通讯兵带信回去,内容为(编号2,进攻时间2);
  c)负责通知将军3的通讯兵被抓,所以将军3没收到参谋1的提议;

12)参谋1收到了至少2个将军的回复,比较两个回复的编号大小,选择大编号对应的进攻时间做为最新的提议;参谋1再次派通讯兵带信给有答复的2个将军,内容为(编号3,进攻时间2);
13)将军1和将军2收到了(编号3,进攻时间2),和本身保存的编号相同,所以保存(编号3,进攻时间2),同时让通讯兵带信回去,内容为(Accepted);
14)参谋1收到了至少2个将军的(accepted)内容,确认进攻时间已经被多数派接受。

四. Zookeeper ZAB协议

Zookeeper Automic Broadcast(ZAB),即Zookeeper原子性广播,是Paxos经典实现

术语:

quorum:集群过半数的集合

1. ZAB(zookeeper)中节点分四种状态

looking:选举Leader的状态(崩溃恢复状态下)

following:跟随者(follower)的状态,服从Leader命令

leading:当前节点是Leader,负责协调工做。

observing:observer(观察者),不参与选举,只读节点。

2. ZAB中的两个模式(ZK是如何进行选举的)

崩溃恢复、消息广播

 

1)崩溃恢复

leader挂了,须要选举新的leader

 

 

a.每一个server都有一张选票<myid,zxid>,如(3,9),选票投本身。
b.每一个server投完本身后,再分别投给其余还可用的服务器。如把Server3的(3,9)分别投给Server4和Server5,一次类推
c.比较投票,比较逻辑:优先比较Zxid,Zxid相同时才比较myid。比较Zxid时,大的作leader;比较myid时,小的作leader
d.改变服务器状态(崩溃恢复->数据同步,或者崩溃恢复->消息广播)

相关概念补充说明:

epoch周期值

acceptedEpoch(比喻:年号):follower已经接受leader更改年号的(newepoch)提议。

currentEpoch(比喻:当前的年号):当前的年号

lastZxid:history中最近接收到的提议zxid(最大的值)

history:当前节点接受到事务提议的log

Zxid数据结构说明:

cZxid = 0x10000001b

64位的数据结构

高32位:10000

    Leader的周期编号+myid的组合

低32位:001b

    事务的自增序列(单调递增的序列)只要客户端有请求,就+1

当产生新Leader的时候,就从这个Leader服务器上取出本地log中最大事务Zxid,从里面读出epoch+1,做为一个新epoch,并将低32位置0(保证id绝对自增)

2)消息广播(相似2P提交)

 

a.Leader接受请求后,将这个请求赋予全局的惟一64位自增Id(zxid)。
b.将zxid做为议案发给全部follower。
c.全部的follower接受到议案后,想将议案写入硬盘后,立刻回复Leader一个ACK(OK)。
d.当Leader接受到合法数量(过半)Acks,Leader给全部follower发送commit命令。
e.follower执行commit命令。
注意:到了这个阶段,ZK集群才正式对外提供服务,而且Leader能够进行消息广播,若是有新节点加入,还须要进行同步。

3)数据同步

a.取出Leader最大lastZxid(从本地log日志来)
b.找到对应zxid的数据,进行同步(数据同步过程保证全部follower一致)
c.只有知足quorum同步完成,准Leader才能成为真正的Leader

 

 参考文章:

Paxos协议超级详细解释+简单实例

相关文章
相关标签/搜索