判断是否为平衡二叉树 Balanced Binary Tree

问题:node

Given a binary tree, determine if it is height-balanced.算法

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.this

解决:spa

【注】平衡二叉树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具备如下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,而且左右两个子树都是一棵平衡二叉树。本题要求判断一棵树是否为平衡二叉树递归

① 采用递归的方式判断左右子树高度之差是否为1便可,注意左右子树也须要判断是否平衡。ci

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution { // 3 ms
    public boolean isBalanced(TreeNode root) {
        if(root == null) return true;
        int ldepth = getDepth(root.left);
        int rdepth = getDepth(root.right);
        if(Math.abs(ldepth - rdepth) <= 1 && isBalanced(root.left) && isBalanced(root.right)) return true;
        return false;
    }
    public int getDepth(TreeNode node){
        if(node == null) return 0;
        return Math.max(getDepth(node.left),getDepth(node.right)) + 1;
    }
}get

② 在discuss中看到这个,在计算深度时顺便判断左右子树是否平衡,能够提升效率。it

public class Solution { //1ms
    public boolean isBalanced(TreeNode root) {
        return helper(root) >= 0;
    }
    private int helper(TreeNode root) { //helper方法的做用是计算树的高度同时判断是否平衡,若是不平衡返回-1,平衡返回0,另外最后返回的是树的高度
        if (root == null) {
          return 0;
        }
        int ldepth = helper(root.left);
        if (ldepth == -1) {
          return -1;
        }
        int rdepth = helper(root.right);
        if (rdepth == -1) {
          return -1;
        }
        if (Math.abs(ldepth - rdepth) > 1) {
          return -1;
        }
        return Math.max(ldepth, rdepth) + 1;
    }
}io

相关文章
相关标签/搜索