摘要: 在stackoverflow上有一个很是有名的问题:为何处理有序数组要比非有序数组快?,可见分支预测对代码运行效率有很是大的影响。要提升代码执行效率,一个重要的原则就是尽可能避免CPU把流水线清空,那么提升分支预测的成功率就很是重要。java
在stackoverflow上有一个很是有名的问题:为何处理有序数组要比非有序数组快?,可见分支预测对代码运行效率有很是大的影响。git
现代CPU都支持分支预测(branch prediction)和指令流水线(instruction pipeline),这两个结合能够极大提升CPU效率。对于像简单的if跳转,CPU是能够比较好地作分支预测的。可是对于switch跳转,CPU则没有太多的办法。switch本质上是据索引,从地址数组里取地址再跳转。github
要提升代码执行效率,一个重要的原则就是尽可能避免CPU把流水线清空,那么提升分支预测的成功率就很是重要。api
那么对于代码里,若是某个switch分支几率很高,是否能够考虑代码层面帮CPU把判断提早,来提升代码执行效率呢?数组
在ChannelEventRunnable
里有一个switch来判断channel state,而后作对应的逻辑:查看dom
一个channel创建起来以后,超过99.9%状况它的state都是ChannelState.RECEIVED
,那么能够考虑把这个判断提早。性能
下面经过jmh来验证下:spa
public class TestBenchMarks {
public enum ChannelState { CONNECTED, DISCONNECTED, SENT, RECEIVED, CAUGHT } @State(Scope.Benchmark) public static class ExecutionPlan { @Param({ "1000000" }) public int size; public ChannelState[] states = null; @Setup public void setUp() { ChannelState[] values = ChannelState.values(); states = new ChannelState[size]; Random random = new Random(new Date().getTime()); for (int i = 0; i < size; i++) { int nextInt = random.nextInt(1000000); if (nextInt > 100) { states[i] = ChannelState.RECEIVED; } else { states[i] = values[nextInt % values.length]; } } } } @Fork(value = 5) @Benchmark @BenchmarkMode(Mode.Throughput) public void benchSiwtch(ExecutionPlan plan, Blackhole bh) { int result = 0; for (int i = 0; i < plan.size; ++i) { switch (plan.states[i]) { case CONNECTED: result += ChannelState.CONNECTED.ordinal(); break; case DISCONNECTED: result += ChannelState.DISCONNECTED.ordinal(); break; case SENT: result += ChannelState.SENT.ordinal(); break; case RECEIVED: result += ChannelState.RECEIVED.ordinal(); break; case CAUGHT: result += ChannelState.CAUGHT.ordinal(); break; } } bh.consume(result); } @Fork(value = 5) @Benchmark @BenchmarkMode(Mode.Throughput) public void benchIfAndSwitch(ExecutionPlan plan, Blackhole bh) { int result = 0; for (int i = 0; i < plan.size; ++i) { ChannelState state = plan.states[i]; if (state == ChannelState.RECEIVED) { result += ChannelState.RECEIVED.ordinal(); } else { switch (state) { case CONNECTED: result += ChannelState.CONNECTED.ordinal(); break; case SENT: result += ChannelState.SENT.ordinal(); break; case DISCONNECTED: result += ChannelState.DISCONNECTED.ordinal(); break; case CAUGHT: result += ChannelState.CAUGHT.ordinal(); break; } } } bh.consume(result); }
}code
ChannelState.RECEIVED
benchmark结果是:索引
Result "io.github.hengyunabc.jmh.TestBenchMarks.benchSiwtch": 576.745 ±(99.9%) 6.806 ops/s [Average] (min, avg, max) = (490.348, 576.745, 618.360), stdev = 20.066 CI (99.9%): 569.939, 583.550
Benchmark (size) Mode Cnt Score Error Units
TestBenchMarks.benchIfAndSwitch 1000000 thrpt 100 1535.867 ± 61.212 ops/s
TestBenchMarks.benchSiwtch 1000000 thrpt 100 576.745 ± 6.806 ops/s
能够看到提早if判断的确提升了代码效率,这种技巧能够放在性能要求严格的地方。
Benchmark代码:https://github.com/hengyunabc/jmh-demo