JavaShuo
栏目
标签
视觉场景理解论文阅读笔记:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
时间 2020-12-30
标签
阅读笔记
栏目
快乐工作
繁體版
原文
原文链接
一、文章相关资料 1.论文地址:点击打开链接 2.论文代码:点击打开链接 3.发表时间:2018 二、阅读笔记 1.论文思想 文章提出一种自上而下与自下而上相结合的注意力模型方法,应用于视觉场景理解和视觉问答系统的相关问题。其中基于自下而上的关注模型(一般使用Faster R-CNN)用于提取图像中的兴趣区域,获取对象特征;而基于自上而下的注意力模型用于学习特征所对应的权重(一般使
>>阅读原文<<
相关文章
1.
论文笔记:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
2.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
3.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
4.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
5.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
6.
论文笔记:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answer
7.
论文解读:Hierarchical Question-Image Co-Attention for Visual Question Answering
8.
阅读笔记(Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding)
9.
Gated Self-Matching Networks for Reading Comprehension and Question Answering论文阅读笔记
10.
Question-Guided Spatio-Temporal Contextual Attention for Video Question Answering 论文阅读笔记
更多相关文章...
•
RSS 阅读器
-
RSS 教程
•
SQLite AND/OR 运算符
-
SQLite教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
RxJava操作符(七)Conditional and Boolean
相关标签/搜索
action.....and
between...and
react+and
论文阅读
论文阅读笔记
阅读理解
阅读笔记
论文解读
论文笔记
CV论文阅读
快乐工作
MyBatis教程
Redis教程
MySQL教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
微软准备淘汰 SHA-1
2.
Windows Server 2019 Update 2010,20H2
3.
Jmeter+Selenium结合使用(完整篇)
4.
windows服务基础
5.
mysql 查看线程及kill线程
6.
DevExpresss LookUpEdit详解
7.
GitLab简单配置SSHKey与计算机建立连接
8.
桶排序(BucketSort)
9.
桶排序(BucketSort)
10.
C++ 桶排序(BucketSort)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文笔记:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
2.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
3.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
4.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
5.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
6.
论文笔记:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answer
7.
论文解读:Hierarchical Question-Image Co-Attention for Visual Question Answering
8.
阅读笔记(Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding)
9.
Gated Self-Matching Networks for Reading Comprehension and Question Answering论文阅读笔记
10.
Question-Guided Spatio-Temporal Contextual Attention for Video Question Answering 论文阅读笔记
>>更多相关文章<<