PaperWeekly 第十期

引 本期PaperWeekly的主题是基于翻译模型(Trans系列)的知识表示学习,主要用来解决知识表示和推理的问题。表示学习旨在将研究对象的语义信息表示为稠密低维实值向量,知识表示学习主要是面向知识图谱中的实体和关系进行表示学习。使用建模方法将实体和向量表示在低维稠密向量空间中,然后进行计算和推理。一般而言的应用任务为triplet classification 和link prediction
相关文章
相关标签/搜索