rabbitmq中文教程python版 - 远程过程调用

源码:https://github.com/ltoddy/rabbitmq-tutorialpython

远程过程调用(RPC)

(using the Pika Python client)git

本章节教程重点介绍的内容

在第二篇教程中,咱们学习了如何使用工做队列在多个工做人员之间分配耗时的任务。程序员

可是若是咱们须要在远程计算机上运行某个功能并等待结果呢?那么,这是一个不一样的事情。
这种模式一般称为远程过程调用(RPC)。github

在本教程中,咱们将使用RabbitMQ构建一个RPC系统:一个客户端和一个可扩展的RPC服务器。
因为咱们没有任何值得分发的耗时任务,咱们将建立一个返回斐波那契数字的虚拟RPC服务。json

客户端界面

为了说明如何使用RPC服务,咱们将建立一个简单的客户端类。它将公开一个名为call的方法 ,
它发送一个RPC请求并阻塞,直到收到答案:服务器

fibonacci_rpc = FibonacciRpcClient()
result = fibonacci_rpc.call(4)
print("fib(4) is %r" % result)
*有关RPC的说明*

虽然RPC是计算中很常见的模式,但它常常被吹毛求疵。当程序员不知道函数调用是本地的仍是
慢速的RPC时会出现这些问题。像这样的混乱致使不可预知的问题,并增长了调试的没必要要的复杂性,
而不是咱们想要的简化软件。

铭记这一点,请考虑如下建议:

  * 确保显而易见哪一个函数调用是本地的,哪一个是远程的。
  * 记录您的系统。清楚组件之间的依赖关系。
  * 处理错误状况。当RPC服务器长时间关闭时,客户端应该如何反应?

有疑问时避免RPC。若是能够的话,你应该使用异步管道 - 而不是相似于RPC的阻塞,
其结果被异步推送到下一个计算阶段。

回调队列

通常来讲,经过RabbitMQ来执行RPC是很容易的。客户端发送请求消息,服务器回复响应消息。
为了接收响应,客户端须要发送一个“回调”队列地址和请求。让咱们试试看:app

result = channel.queue_declare(exclusive=True)
callback_queue = result.method.queue

channel.basic_publish(exchange='',
                      routing_key='rpc_queue',
                      properties=pika.BasicProperties(
                            reply_to = callback_queue,
                            ),
                      body=request)
消息属性

AMQP 0-9-1协议预约义了一组包含14个属性的消息。大多数属性不多使用,但如下状况除外:

delivery_mode:将消息标记为持久(值为2)或瞬态(任何其余值)。你可能会记得第二篇教程中的这个属性。
content_type:用于描述编码的MIME类型。例如,对于常用的JSON编码,将此属性设置为application/json是一种很好的作法。
reply_to:一般用于命名回调队列。
correlation_id:用于将RPC响应与请求关联起来。

相关ID

在上面介绍的方法中,咱们建议为每一个RPC请求建立一个回调队列。这是很是低效的,
但幸运的是有一个更好的方法 - 让咱们为每一个客户端建立一个回调队列。异步

这引起了一个新问题,在该队列中收到回复后,不清楚回复属于哪一个请求。那是何时使用correlation_id属性。
咱们将把它设置为每一个请求的惟一值。稍后,当咱们在回调队列中收到消息时,咱们将查看此属性,
并基于此属性,咱们将可以将响应与请求进行匹配。若是咱们看到未知的correlation_id值,
咱们能够放心地丢弃该消息 - 它不属于咱们的请求。函数

您可能会问,为何咱们应该忽略回调队列中的未知消息,而不是抛出错误?
这是因为服务器端可能出现竞争情况。虽然不太可能,但在发送给咱们答案以后,但在发送请求的确认消息以前,
RPC服务器可能会死亡。若是发生这种状况,从新启动的RPC服务器将再次处理该请求。
这就是为何在客户端,咱们必须优雅地处理重复的响应,理想状况下RPC应该是等幂的。学习

总结

image

咱们的RPC会像这样工做:

  • 当客户端启动时,它建立一个匿名独占回调队列。
  • 对于RPC请求,客户端将发送具备两个属性的消息:reply_to,该消息设置为回调队列和correlation_id,该值设置为每一个请求的惟一值。
  • 该请求被发送到rpc_queue队列。
  • RPC worker(又名:服务器)正在等待该队列上的请求。当出现请求时,它执行该做业,并使用reply_to字段中的队列将结果发送回客户端。
  • 客户端在回调队列中等待数据。当出现消息时,它会检查correlation_id属性。若是它匹配来自请求的值,则返回对应用程序的响应。

把它放在一块儿

rpc_server.py的代码:

#!/usr/bin/env python
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))

channel = connection.channel()

channel.queue_declare(queue='rpc_queue')


def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n - 1) + fib(n - 2)


def on_request(ch, method, props, body):
    n = int(body)

    print(" [.] fib(%s)" % n)
    response = fib(n)

    ch.basic_publish(exchange='',
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(
                         correlation_id=props.correlation_id),
                     body=str(response))
    ch.basic_ack(delivery_tag=method.delivery_tag)


channel.basic_qos(prefetch_size=1)
channel.basic_consume(on_request, queue='rpc_queue')

print(" [x] Awaiting RPC requests")
channel.start_consuming()

服务器代码很是简单:

  • (4)像往常同样,咱们首先创建链接并声明队列。
  • (11)咱们声明咱们的斐波那契函数。它只假定有效的正整数输入。(不要期望这个版本适用于大数字,它多是最慢的递归实现)。
  • (20)咱们声明了basic_consume的回调,它是RPC服务器的核心。它在收到请求时执行。它完成工做并将响应发回。
  • (34)咱们可能想运行多个服务器进程。为了在多台服务器上平均分配负载,咱们须要设置prefetch_count设置。

rpc_client.py的代码:

#!/usr/bin/env python
import pika
import uuid


class FibonacciRpcClient:
    def __init__(self):
        self.connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))

        self.channel = self.connection.channel()

        result = self.channel.queue_declare(exclusive=True)
        self.callback_queue = result.method.queue

        self.channel.basic_consume(self.on_response, no_ack=True)

    def on_response(self, ch, method, props, body):
        if self.corr_id == props.corrrelation_id:
            self.response = body

    def call(self, n):
        self.response = None
        self.corr_id = str(uuid.uuid4())
        self.channel.basic_publish(exchange='',
                                   routing_key='rpc_queue',
                                   properties=pika.BasicProperties(
                                       reply_to=self.callback_queue,
                                       correlation_id=self.corr_id),
                                   body=str(n))
        while self.response is None:
            self.connection.process_data_events()

        return int(self.response)


fibonacci_rpc = FibonacciRpcClient()

print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

客户端代码稍有涉及:

  • (8)咱们创建链接,通道并为回复声明独占的“回调”队列。
  • (17)咱们订阅'回调'队列,以便咱们能够接收RPC响应。
  • (19)对每一个响应执行的'on_response'回调函数作了一个很是简单的工做,对于每一个响应消息它检查correlation_id是不是咱们正在寻找的。若是是这样,它将保存self.response中的响应并打破消费循环。
  • (23)接下来,咱们定义咱们的主要调用方法 - 它执行实际的RPC请求。
  • (25)在这个方法中,首先咱们生成一个惟一的correlation_id数并保存 - 'on_response'回调函数将使用这个值来捕获适当的响应。
  • (29)接下来,咱们发布具备两个属性的请求消息:reply_tocorrelation_id
  • (32)在这一点上,咱们能够坐下来等待,直到适当的回应到达。
  • (41)最后,咱们将回复返回给用户。
相关文章
相关标签/搜索