Bitmap ImageView大小的一些秘密

前言

咱们平时在使用ImageView,当设置宽高为wrap_content的时候,设置bitmap,有没有想过一个问题,那就是大小到底是如何计算的,平时说的那些density又和最终显示的图片大小有什么关系呢。本着严谨的态度,我开始了探索源码解读的不归路上。bash

过程

本次实验所用测试机density为420。咱们首先来解码一张bitmap(ic_launcher大小为144 * 144),代码以下:app

val options = BitmapFactory.Options()
      val bitmap = BitmapFactory.decodeResource(resources, R.mipmap.ic_launcher, options)
      Log.d("Bitmap", "{height: ${bitmap.height} --- width: ${bitmap.width}}")
复制代码

打印结果是{height: 126 --- width: 126},那么这个数值是怎么来的呢。咱们进入decodeResource一看究竟,ide

public static Bitmap decodeResource(Resources res, int id, Options opts) {
        validate(opts);
        Bitmap bm = null;
        InputStream is = null; 
        
        try {
            final TypedValue value = new TypedValue();
            is = res.openRawResource(id, value);

            bm = decodeResourceStream(res, value, is, null, opts);
        } catch (Exception e) {
            /*  do nothing.
                If the exception happened on open, bm will be null.
                If it happened on close, bm is still valid.
            */
        } finally {
            try {
                if (is != null) is.close();
            } catch (IOException e) {
                // Ignore
            }
        }

        if (bm == null && opts != null && opts.inBitmap != null) {
            throw new IllegalArgumentException("Problem decoding into existing bitmap");
        }

        return bm;
    }
复制代码

bitmap是decodeResourceStream产生的,那咱们接着往下看,测试

@Nullable
    public static Bitmap decodeResourceStream(@Nullable Resources res, @Nullable TypedValue value,
            @Nullable InputStream is, @Nullable Rect pad, @Nullable Options opts) {
        validate(opts);
        if (opts == null) {
            opts = new Options();
        }

        if (opts.inDensity == 0 && value != null) {
            final int density = value.density;
            if (density == TypedValue.DENSITY_DEFAULT) {
                opts.inDensity = DisplayMetrics.DENSITY_DEFAULT;
            } else if (density != TypedValue.DENSITY_NONE) {
                opts.inDensity = density;
            }
        }
        
        if (opts.inTargetDensity == 0 && res != null) {
            opts.inTargetDensity = res.getDisplayMetrics().densityDpi;
        }
        
        return decodeStream(is, pad, opts);
    }
复制代码

能够看到,若是options.inDensity等于0,这里会对options作赋值操做,inDensity指的是图片资源所在资源文件夹的density,即xhdpi这些文件对应的density,inTargetDensity是指目标的density即手机屏幕dpi,在这个实验中,资源的原始density是480,目标density是420。赋值操做以后,咱们继续往下看。ui

@Nullable
    public static Bitmap decodeStream(@Nullable InputStream is, @Nullable Rect outPadding,
            @Nullable Options opts) {
        // we don't throw in this case, thus allowing the caller to only check // the cache, and not force the image to be decoded. if (is == null) { return null; } validate(opts); Bitmap bm = null; Trace.traceBegin(Trace.TRACE_TAG_GRAPHICS, "decodeBitmap"); try { if (is instanceof AssetManager.AssetInputStream) { final long asset = ((AssetManager.AssetInputStream) is).getNativeAsset(); bm = nativeDecodeAsset(asset, outPadding, opts); } else { bm = decodeStreamInternal(is, outPadding, opts); } if (bm == null && opts != null && opts.inBitmap != null) { throw new IllegalArgumentException("Problem decoding into existing bitmap"); } setDensityFromOptions(bm, opts); } finally { Trace.traceEnd(Trace.TRACE_TAG_GRAPHICS); } return bm; } 复制代码

这里作的是调用native方法进行解码,具体就不往下看。可是咱们掐指一算和本着直觉来对大小计算,原始大小是144,解码大小是126,inDensity是480,inTargetDensity是420,相信看到这里,聪明的读者很快就能够算出来了,没错,126 = 144 * 420 / 480, 也就是说 targetSize = rawSize * targetDensity / rawDensity,其实也很好理解,就是对图片进行缩放,缩放的依据就是为了适应当前手机的density。那能够对图片解码的大小作修改吗?固然能够,代码献上:this

val options = BitmapFactory.Options()
      options.inTargetDensity = 480
      val bitmap = BitmapFactory.decodeResource(resources, R.mipmap.ic_launcher, options)
      Log.d("Bitmap", "{height: ${bitmap.height} --- width: ${bitmap.width}}")
复制代码

打印结果是{height: 144 --- width: 144},按照上面的公式计算便可获得这个结果,其实咱们就是把目标density作了修改,从而影响bitmap的解码过程。咱们接着修改options,这一次以下:spa

val options = BitmapFactory.Options()
      options.inDensity = 240
      options.inTargetDensity = 480
      val bitmap = BitmapFactory.decodeResource(resources, R.mipmap.ic_launcher, options)
      Log.d("Bitmap", "{height: ${bitmap.height} --- width: ${bitmap.width}}")
复制代码

心算一下,就知道结果是288。这一次咱们是经过修改图片资源的density影响了bitmap的解码产生的大小。 那么ImageView的大小是否和bitmap的一致呢,二话不说上代码跑起来:code

val options = BitmapFactory.Options()
      val bitmap = BitmapFactory.decodeResource(resources, R.mipmap.ic_launcher, options)
      Log.d("Bitmap", "{height: ${bitmap.height} --- width: ${bitmap.width}}")
      image_view.setImageBitmap(bitmap)
      image_view.viewTreeObserver.addOnPreDrawListener {
        Log.d("ImageView", "{height: ${image_view.height} --- width: ${image_view.width}}")
        true
      }
复制代码

结果还真的是同样的,都是126,可是这样还不够,改下options参数试一下, inTargetDensity 改成 480,你猜结果怎么着,bitmap是144,imageview是126,咦这么神奇。老实看代码去吧。从setImageBitmap入手,以下:server

public void setImageBitmap(Bitmap bm) {
        // Hacky fix to force setImageDrawable to do a full setImageDrawable
        // instead of doing an object reference comparison
        mDrawable = null;
        if (mRecycleableBitmapDrawable == null) {
            mRecycleableBitmapDrawable = new BitmapDrawable(mContext.getResources(), bm);
        } else {
            mRecycleableBitmapDrawable.setBitmap(bm);
        }
        setImageDrawable(mRecycleableBitmapDrawable);
    }

复制代码

能够看到实际上内部是把bitmap装进BitmapDrawable,继续往下看:图片

public void setImageDrawable(@Nullable Drawable drawable) {
        if (mDrawable != drawable) {
            mResource = 0;
            mUri = null;

            final int oldWidth = mDrawableWidth;
            final int oldHeight = mDrawableHeight;

            updateDrawable(drawable);

            if (oldWidth != mDrawableWidth || oldHeight != mDrawableHeight) {
                requestLayout();
            }
            invalidate();
        }
    }
复制代码

关键代码是updateDrawable,除此以外,还会进行新旧宽高的判断,决定是否从新requestLayout。查看updateDrawable代码,

private void updateDrawable(Drawable d) {
        if (d != mRecycleableBitmapDrawable && mRecycleableBitmapDrawable != null) {
            mRecycleableBitmapDrawable.setBitmap(null);
        }

        boolean sameDrawable = false;

        if (mDrawable != null) {
            sameDrawable = mDrawable == d;
            mDrawable.setCallback(null);
            unscheduleDrawable(mDrawable);
            if (!sCompatDrawableVisibilityDispatch && !sameDrawable && isAttachedToWindow()) {
                mDrawable.setVisible(false, false);
            }
        }

        mDrawable = d;

        if (d != null) {
            d.setCallback(this);
            d.setLayoutDirection(getLayoutDirection());
            if (d.isStateful()) {
                d.setState(getDrawableState());
            }
            if (!sameDrawable || sCompatDrawableVisibilityDispatch) {
                final boolean visible = sCompatDrawableVisibilityDispatch
                        ? getVisibility() == VISIBLE
                        : isAttachedToWindow() && getWindowVisibility() == VISIBLE && isShown();
                d.setVisible(visible, true);
            }
            d.setLevel(mLevel);
            mDrawableWidth = d.getIntrinsicWidth();
            mDrawableHeight = d.getIntrinsicHeight();
            applyImageTint();
            applyColorMod();

            configureBounds();
        } else {
            mDrawableWidth = mDrawableHeight = -1;
        }
    }
复制代码

关键的有几处,一处是drawable的赋值,另一处是

mDrawableWidth = d.getIntrinsicWidth();
   mDrawableHeight = d.getIntrinsicHeight();
   configureBounds();
复制代码

对drawable的宽高进行赋值,而后从新调整bound的大小,configureBounds方法代码较多,这里先摘抄最重要的一部分,

final int dwidth = mDrawableWidth;
        final int dheight = mDrawableHeight;
        mDrawable.setBounds(0, 0, dwidth, dheight);
复制代码

到这里就水落石出了,ImageView的宽高由上面d.getIntrinsicWidth(),d.getIntrinsicHeight()决定,因此破案的关键就在于这两个方法,走,看源码去,因为这里drawable的实现类是BitmapDrawable,因此须要查看BitmapDrawable的实现方法,以下

@Override
    public int getIntrinsicWidth() {
        return mBitmapWidth;
    }

    @Override
    public int getIntrinsicHeight() {
        return mBitmapHeight;
    }
复制代码

好的,离胜利不远了,查看mBitmapWidth赋值,

private void computeBitmapSize() {
        final Bitmap bitmap = mBitmapState.mBitmap;
        if (bitmap != null) {
            mBitmapWidth = bitmap.getScaledWidth(mTargetDensity);
            mBitmapHeight = bitmap.getScaledHeight(mTargetDensity);
        } else {
            mBitmapWidth = mBitmapHeight = -1;
        }
    }
复制代码

保持微笑😊,离结果又近了一步,

public int getScaledHeight(int targetDensity) {
        return scaleFromDensity(getHeight(), mDensity, targetDensity);
    }

    /**
     * @hide
     */
    static public int scaleFromDensity(int size, int sdensity, int tdensity) {
        if (sdensity == DENSITY_NONE || tdensity == DENSITY_NONE || sdensity == tdensity) {
            return size;
        }

        // Scale by tdensity / sdensity, rounding up.
        return ((size * tdensity) + (sdensity >> 1)) / sdensity;
    }
复制代码

到这里就又恍然大悟了,原来绘制到ImageView的bitmapDrawable会对bitmap再进行一次缩放,缩放的比例仍是inDensity,targetDensity,只不过这里的inDensity是bitmap的density,若是options没有作设置,bitmap的density即为图片资源文件夹的density,在这里是480,那targetDensity又是多少呢,找到BitmapDrawable赋值的地方,代码以下:

state.mTargetDensity = Drawable.resolveDensity(r, 0);
    static int resolveDensity(@Nullable Resources r, int parentDensity) {
        final int densityDpi = r == null ? parentDensity : r.getDisplayMetrics().densityDpi;
        return densityDpi == 0 ? DisplayMetrics.DENSITY_DEFAULT : densityDpi;
    }

复制代码

这里很明显能够获得 targetDensity等于设备的density,即420。说到这里,是否是有种柳暗花明又一村的感受呢,由于这和bitmap的默认缩放配置是同样的,虽然咱们修改了bitmap的缩放配置,可是并无影响到bitmapDrawable的配置,因此BitmapDrawable的大小为 144 * 420 / 480 = 126。 看到这里,聪明的读者A确定能够想到,既然不能修改BitmapDrawable的targetDensity, 那么我经过修改options的inDensity不就能够修改图片大小了吗,恭喜你,答对了,

val options = BitmapFactory.Options()
      options.inDensity = 240
      options.inTargetDensity = 480
      val bitmap = BitmapFactory.decodeResource(resources, R.mipmap.ic_launcher, options)
      Log.d("Bitmap", "{height: ${bitmap.height} --- width: ${bitmap.width}}")
      image_view.setImageBitmap(bitmap)
      image_view.viewTreeObserver.addOnPreDrawListener {
        Log.d("ImageView", "{height: ${image_view.height} --- width: ${image_view.width}}")
        true
      }
复制代码

铛铛铛,小学数学问题,结果是256,由于分母少了二分之一,因此至关于变成两倍。看到这里,读者A确定以为本身很聪明,一切都在本身掌握当中, 可是too young too naive,其实能够修改BitmapDrawable的targetDensity,代码献上,

val options = BitmapFactory.Options()
      val bitmap = BitmapFactory.decodeResource(resources, R.mipmap.ic_launcher, options)
      Log.d("Bitmap", "{height: ${bitmap.height} --- width: ${bitmap.width}}")

      val bitmapDrawable = BitmapDrawable(resources, bitmap)
      bitmapDrawable.setTargetDensity(480)
      image_view.setImageDrawable(bitmapDrawable)

      image_view.viewTreeObserver.addOnPreDrawListener {
        Log.d("ImageView", "{height: ${image_view.height} --- width: ${image_view.width}}")
        true
      }
复制代码

什么,还想要结果,这么简单的问题。


好吧,偷偷告诉你,其实结果是144。

总结

  • 对于Bitmap,大小等于 rawSize * targetDensity / rawDensity,targetDensity是目标的density, rawDensity是原始资源的density,固然这两个值均可以经过options进行修改,其实从这里也能够看出图片资源放在适合的资源夹的重要性,若是图片资源放的文件夹density过小,会致使解码的bitmap放大,从而致使内存增长,毕竟解码以后的面积变大了,单位面积的占用内存又不变。
  • 对于ImageView,咱们能够知道,即便咱们对bitmap进行了缩放,在内存的drawable又会从新进行缩放,以用来适应实际大小。缩放比例咱们仍是能够经过targetDensity,inDensity修改进行控制的。
  • 好的,这一次的分享就到此结束了,喜欢的点个赞呗,或者你们讨论讨论。
相关文章
相关标签/搜索