HAN分层注意网络

HAN 输入词向量序列后,通过词级别的Bi-GRU后,每个词都会有一个对应的Bi-GRU输出的隐向量h,再通过 u w u_w uw​向量与每个时间步的h向量点积得到attention权重,然后把h序列做一个根据attention权重的加权和,得到句子summary向量s2,每个句子再通过同样的Bi-GRU结构再加attention得到最终输出的文档特征向量v向量,然后v向量通过后级dense层再
相关文章
相关标签/搜索