AI安全---对抗攻击防御措施

目前,在对抗攻击防御上存在三个主要方向: 1)在学习过程中修改训练过程或者修改的输入样本。 2)修改网络,比如:添加更多层/子网络、改变损失/激活函数等。 3)当分类未见过的样本时,用外部模型作为附加网络。 1.改训练过程/ 输入数据 1 蛮力对抗训练 通过不断输入新类型的对抗样本并执行对抗训练,从而不断提升网络的鲁棒性。为了保证有效性,该方法需要使用高强度的对抗样本,并且网络架构要有充足的表达能
相关文章
相关标签/搜索