目录python
雷达图 Radar Chart编程
雷达图是多特性直观展现的重要方式spa
输出:雷达图code
输出:雷达图blog
# HollandRadarDraw import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font.family'] = 'SimHei' radar_labels = np.array( ['研究型(I)', '艺术型(A)', '社会型(S)', '企业型(E)', '常规型(C)', '现实型(R)']) data = np.array([[0.40, 0.32, 0.35, 0.30, 0.30, 0.88], [0.85, 0.35, 0.30, 0.40, 0.40, 0.30], [0.43, 0.89, 0.30, 0.28, 0.22, 0.30], [0.30, 0.25, 0.48, 0.85, 0.45, 0.40], [0.20, 0.38, 0.87, 0.45, 0.32, 0.28], [0.34, 0.31, 0.38, 0.40, 0.92, 0.28]]) # 数据值 data_labels = ('艺术家', '实验员', '工程师', '推销员', '社会工做者', '记事员') angles = np.linspace(0, 2 * np.pi, 6, endpoint=False) data = np.concatenate((data, [data[0]])) angles = np.concatenate((angles, [angles[0]])) fig = plt.figure(facecolor="white") plt.subplot(111, polar=True) plt.plot(angles, data, 'o-', linewidth=1, alpha=0.2) plt.fill(angles, data, alpha=0.25) plt.thetagrids(angles * 180 / np.pi, radar_labels, frac=1.2) plt.figtext(0.52, 0.95, '霍兰德人格分析', ha='center', size=20) legend = plt.legend(data_labels, loc=(0.94, 0.80), labelspacing=0.1) plt.setp(legend.get_texts(), fontsize='large') plt.grid(True) plt.savefig('holland_radar.jpg?x-oss-process=style/watermark') plt.show()
目标 + 沉浸 + 熟练ci