这道题有 5 种方法,8 种实现,详细分析能够看<u>花花酱</u>的 YouTube 专栏。java
[TOC]python
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋
的元素。算法
你能够假设数组是非空的,而且给定的数组老是存在众数。数组
示例 1:ide
输入: [3,2,3] 输出: 3
示例 2:spa
输入: [2,2,1,1,1,2,2] 输出: 2
遍历数组中的每一个元素,统计该元素出现的次数(嵌套遍历),若是该元素出现的次数 $> \left \lfloor n/2 \right \rfloor$,则该元素就是数组的众数。code
class Solution { public int majorityElement(int[] nums) { int majorityCount = nums.length / 2; for (int num1 : nums) { int count = 0; for (int num2 : nums) { if (num2 == num1) { ++count; } } if (count > majorityCount) { return num1; } } throw new IllegalArgumentException("The array does not contain a majority element!"); } }
class Solution: def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ majority_count = len(nums) // 2 for num1 in nums: count = sum(1 for num2 in nums if num2 == num1) if count > majority_count: return num1
for
循环,所以总的时间复杂度是 $O(n^2)$ 的利用哈希表记录数组中元素出现的次数,因为哈希表的插入操做的时间复杂度是 $O(1)$ 的,因此遍历整个数组统计出现次数的操做的时间复杂度是 $O(n)$ 的。接着,再遍历一遍哈希表,取出众数。blog
class Solution { public int majorityElement(int[] nums) { Map<Integer, Integer> counts = new HashMap<>(); for (int num : nums) { if (counts.containsKey(num)) { counts.replace(num, counts.get(num) + 1); } else { counts.put(num, 1); } } Map.Entry<Integer, Integer> majorityEntry = null; for (Map.Entry<Integer, Integer> entry : counts.entrySet()) { if (majorityEntry == null || entry.getValue() > majorityEntry.getValue()) { majorityEntry = entry; } } return majorityEntry.getKey(); } }
class Solution: def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ counts = dict() for num in nums: counts[num] = counts.get(num, 0) + 1 return max(counts, key=counts.get)
将数组按照顺序(递增或者递减)排列好后,索引为 $\left \lfloor n/2 \right \rfloor$ 的元素就是数组的众数。排序
class Solution { public int majorityElement(int[] nums) { Arrays.sort(nums); return nums[nums.length / 2]; } }
class Solution: def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ return sorted(nums)[len(nums) // 2]
多数投票算法通常用于寻找一个序列的多数元素(只须要线性时间和常数空间),是一种典型的流式算法(streaming algorithm)。可是,通常来讲,该算法没法找到一个序列的众数(mode),除非众数出现的次数大于 $\lfloor n/2 \rfloor$ 次。多数投票算法的思想是这样:统计一个序列中的全部元素,将多数元素记为 $+1$,其他的元素记为 $-1$,那么最后的和必定是正的。具体地,该算法会维护两个变量,一个用于记录序列中的元素,记为 m
,一个做为计数器,记为 count
。遍历数组中的每一个元素,若是当前的 count
为 0,则将当前元素保存在 m
中,并设 count
为1;若是 count
不为0,则判断当前元素与 m
是否相等,相等则 count
加一,不等则 count
减一。遍历结束,变量 m
就是咱们寻找的多数元素。索引
class Solution { public int majorityElement(int[] nums) { int me = nums[0], count = 1; for (int i = 1; i < nums.length; ++i) { if (count == 0) { me = nums[i]; count = 1; } else if (me == nums[i]) { ++count; } else { --count; } } return me; } }
class Solution: def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ me, count = 0, 0 for num in nums: if count == 0: me, count = num, 1 elif me == num: count += 1 else: count -= 1 return me