概述:Apache Beam WordCount编程实战及源码解读,并经过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流处理,提供一套先进的统一的编程模型,并能够运行大数据处理引擎上。完整项目Github源码java
负责公司大数据处理相关架构,可是具备多样性,极大的增长了开发成本,急需统一编程处理,Apache Beam,一处编程,到处运行,故将折腾成果分享出来。git
Apache Beam 于2017年1月10日成为Apache新的顶级项目。github
主要是开发API,为批处理和流处理提供统一的编程模型。目前(2017)支持JAVA语言,而Python正在紧张开发中。apache
基于maven,intellij IDEA,pom.xm查看 完整项目Github源码 。直接经过IDEA的项目导入功能便可导入完整项目,等待MAVEN下载依赖包,而后按照以下解读步骤便可顺利运行。编程
关键步骤:markdown
/** * MIT. * Author: wangxiaolei(王小雷). * Date:17-2-20. * Project:ApacheBeamWordCount. */
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.Aggregator;
import org.apache.beam.sdk.transforms.Count;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.transforms.Sum;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
public class WordCount {
/** *1.a.经过Dofn编程Pipeline使得代码很简洁。b.对输入的文本作单词划分,输出。 */
static class ExtractWordsFn extends DoFn<String, String> {
private final Aggregator<Long, Long> emptyLines =
createAggregator("emptyLines", Sum.ofLongs());
@ProcessElement
public void processElement(ProcessContext c) {
if (c.element().trim().isEmpty()) {
emptyLines.addValue(1L);
}
// 将文本行划分为单词
String[] words = c.element().split("[^a-zA-Z']+");
// 输出PCollection中的单词
for (String word : words) {
if (!word.isEmpty()) {
c.output(word);
}
}
}
}
/** *2.格式化输入的文本数据,将转换单词为并计数的打印字符串。 */
public static class FormatAsTextFn extends SimpleFunction<KV<String, Long>, String> {
@Override
public String apply(KV<String, Long> input) {
return input.getKey() + ": " + input.getValue();
}
}
/** *3.单词计数,PTransform(PCollection Transform)将PCollection的文本行转换成格式化的可计数单词。 */
public static class CountWords extends PTransform<PCollection<String>,
PCollection<KV<String, Long>>> {
@Override
public PCollection<KV<String, Long>> expand(PCollection<String> lines) {
// 将文本行转换成单个单词
PCollection<String> words = lines.apply(
ParDo.of(new ExtractWordsFn()));
// 计算每一个单词次数
PCollection<KV<String, Long>> wordCounts =
words.apply(Count.<String>perElement());
return wordCounts;
}
}
/** *4.能够自定义一些选项(Options),好比文件输入输出路径 */
public interface WordCountOptions extends PipelineOptions {
/** * 文件输入选项,能够经过命令行传入路径参数,路径默认为gs://apache-beam-samples/shakespeare/kinglear.txt */
@Description("Path of the file to read from")
@Default.String("gs://apache-beam-samples/shakespeare/kinglear.txt")
String getInputFile();
void setInputFile(String value);
/** * 设置结果文件输出路径,在intellij IDEA的运行设置选项中或者在命令行中指定输出文件路径,如./pom.xml */
@Description("Path of the file to write to")
@Required
String getOutput();
void setOutput(String value);
}
/** * 5.运行程序 */
public static void main(String[] args) {
WordCountOptions options = PipelineOptionsFactory.fromArgs(args).withValidation()
.as(WordCountOptions.class);
Pipeline p = Pipeline.create(options);
p.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
.apply(new CountWords())
.apply(MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));
p.run().waitUntilFinish();
}
}
pom.xml
模块加载是否成功,在工具中开发大数据程序,利于调试,开发体验较好)Spark运行架构
设置VM optionsintellij-idea
-DPapex-runner
设置Programe argumentsapp
--inputFile=pom.xml --output=counts
Apex运行框架
设置VM options
-DPapex-runner
设置Programe arguments
--inputFile=pom.xml --output=counts
Flink运行等等
设置VM options
-DPflink-runner
设置Programe arguments
--inputFile=pom.xml --output=counts
mvn archetype:generate -DarchetypeRepository=https://repository.apache.org/content/groups/snapshots -DarchetypeGroupId=org.apache.beam -DarchetypeArtifactId=beam-sdks-java-maven-archetypes-examples -DarchetypeVersion=LATEST -DgroupId=org.example -DartifactId=word-count-beam -Dversion="0.1" -Dpackage=org.apache.beam.examples -DinteractiveMode=false
mvn compile exec:java -Dexec.mainClass=org.apache.beam.examples.WordCount -Dexec.args="--runner=SparkRunner --inputFile=pom.xml --output=counts" -Pspark-runner