中文情感分析——snownlp类库 源码注释及使用

最近发现了snownlp这个库,这个类库是专门针对中文文本进行文本挖掘的。python

主要功能:

  • 中文分词(Character-Based Generative Model
  • 词性标注(TnT 3-gram 隐马)
  • 情感分析(如今训练数据主要是买卖东西时的评价,因此对其余的一些可能效果不是很好,待解决)
  • 文本分类(Naive Bayes)
  • 转换成拼音(Trie树实现的最大匹配)
  • 繁体转简体(Trie树实现的最大匹配)
  • 提取文本关键词(TextRank算法)
  • 提取文本摘要(TextRank算法)
  • tf,idf
  • Tokenization(分割成句子)
  • 文本类似(BM25
  • 支持python3(感谢erning

官网信息:

snownlp github:https://github.com/isnowfy/snownlpgit

使用及源码分析:

snownlp类库的安装:github

$ pip install snownlp

使用snownlp进行情感分析:web

# -*- coding:utf-8 -*-
from snownlp import SnowNLP

#建立snownlp对象,设置要测试的语句
s = SnowNLP(u'买来给家婆用来洗儿子的衣服的')

print("1",s.words)   
                #将句子分红单词      
                # ['买', '来', '给', '家婆', '用', '来', '洗', '儿子', '的', '衣服', '的']

s.tags         
                # 例如:[(u'这个', u'r'), (u'东西', u'n'),
                #  (u'真心', u'd'), (u'很', u'd'),
                #  (u'赞', u'Vg')]

# 调用sentiments方法获取积极情感几率 positive的几率
print("2",s.sentiments)

s.pinyin        # 将汉字语句转换为Pinyin语句
                # 例如:[u'zhe', u'ge', u'dong', u'xi',
                #  u'zhen', u'xin', u'hen', u'zan']
#————————————————————————————————————————————————————————————————————————————————————————————————————————
s = SnowNLP(u'「繁體字」「繁體中文」的叫法在臺灣亦很常見。')

s.han           #将繁体字转换为简体字      
                # u'「繁体字」「繁体中文」的叫法
                # 在台湾亦很常见。'
#————————————————————————————————————————————————————————————————————————————————————————————————————————
text = u'''
天然语言处理是计算机科学领域与人工智能领域中的一个重要方向。
它研究能实现人与计算机之间用天然语言进行有效通讯的各类理论和方法。
天然语言处理是一门融语言学、计算机科学、数学于一体的科学。
所以,这一领域的研究将涉及天然语言,即人们平常使用的语言,
因此它与语言学的研究有着密切的联系,但又有重要的区别。
天然语言处理并非通常地研究天然语言,
而在于研制能有效地实现天然语言通讯的计算机系统,
特别是其中的软件系统。于是它是计算机科学的一部分。
'''

s = SnowNLP(text)

s.keywords(3)    # [u'语言', u'天然', u'计算机']

s.summary(3)    # [u'于是它是计算机科学的一部分',
                #  u'天然语言处理是一门融语言学、计算机科学、
                #     数学于一体的科学',
                #  u'天然语言处理是计算机科学领域与人工智能
                #     领域中的一个重要方向']
s.sentences
                #分红句子
#————————————————————————————————————————————————————————————————————————————————————————————————————————
s = SnowNLP([[u'这篇', u'文章'],
             [u'那篇', u'论文'],
             [u'这个']])
print(s.tf)     #TF意思是词频(Term Frequency)
print(s.idf)    #IDF意思是逆文本频率指数(Inverse Document Frequency)  
s.sim([u'文章'])# [0.3756070762985226, 0, 0]

 

实现过程:

1.首先从SnowNLP入手,看一下sentiments方法,在sentiments方法中,调用了sentiment下的分类方法。算法

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
 
from . import normal
from . import seg
from . import tag
from . import sentiment
from .sim import bm25
from .summary import textrank
from .summary import words_merge
 
 
class SnowNLP(object):
 
    def __init__(self, doc):
        self.doc = doc
        self.bm25 = bm25.BM25(doc)
 
    @property
    def words(self):
        return seg.seg(self.doc)
 
    @property
    def sentences(self):
        return normal.get_sentences(self.doc)
 
    @property
    def han(self):
        return normal.zh2hans(self.doc)
 
    @property
    def pinyin(self):
        return normal.get_pinyin(self.doc)
 
    @property
    def sentiments(self):
        return sentiment.classify(self.doc)#调用了sentiment的classify分类方法
 
    @property
    def tags(self):
        words = self.words
        tags = tag.tag(words)
        return zip(words, tags)
 
    @property
    def tf(self):
        return self.bm25.f
 
    @property
    def idf(self):
        return self.bm25.idf
 
    def sim(self, doc):
        return self.bm25.simall(doc)
 
    def summary(self, limit=5):
        doc = []
        sents = self.sentences
        for sent in sents:
            words = seg.seg(sent)
            words = normal.filter_stop(words)
            doc.append(words)
        rank = textrank.TextRank(doc)
        rank.solve()
        ret = []
        for index in rank.top_index(limit):
            ret.append(sents[index])
        return ret
 
    def keywords(self, limit=5, merge=False):
        doc = []
        sents = self.sentences
        for sent in sents:
            words = seg.seg(sent)
            words = normal.filter_stop(words)
            doc.append(words)
        rank = textrank.KeywordTextRank(doc)
        rank.solve()
        ret = []
        for w in rank.top_index(limit):
            ret.append(w)
        if merge:
            wm = words_merge.SimpleMerge(self.doc, ret)
            return wm.merge()
        return ret

2.sentiment文件夹下的__init__文件api

sentiment中建立了Sentiment对象app

首先调用load方法加载训练好的数据字典,而后调用classify方法,在classify方法中实际调用的是Bayes对象中的classify方法。源码分析

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
 
import os
import codecs
 
from .. import normal
from .. import seg
from ..classification.bayes import Bayes
 
#数据文件路径
data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                         'sentiment.marshal')
 
 
class Sentiment(object):
 
    def __init__(self):
        #建立Bayes对象
        self.classifier = Bayes()
 
    #保存训练好的字典数据
    def save(self, fname, iszip=True):
        self.classifier.save(fname, iszip)
 
    #加载字典数据
    def load(self, fname=data_path, iszip=True):
        self.classifier.load(fname, iszip)
 
    #对文档分词
    def handle(self, doc):
        words = seg.seg(doc)
        words = normal.filter_stop(words)
        return words
 
    # 训练数据集
    def train(self, neg_docs, pos_docs):
        data = []
        #读取消极评论list,同时为每条评论加上neg标签,也放入到一个list中
        for sent in neg_docs:
            data.append([self.handle(sent), 'neg'])
        #读取积极评论list,为每条评论加上pos标签
        for sent in pos_docs:
            data.append([self.handle(sent), 'pos'])
        #调用分类器的训练数据集方法,对模型进行训练
        self.classifier.train(data)
 
    #分类
    def classify(self, sent):
        #调用贝叶斯分类器的分类方法,获取分类标签和几率
        ret, prob = self.classifier.classify(self.handle(sent))
        #若是分类标签是pos直接返回几率值
        if ret == 'pos':
            return prob
        #若是返回的是neg,因为显示的是积极几率值,所以用1减去消极几率值
        return 1-prob
 
 
classifier = Sentiment()
classifier.load()
 
#训练数据
def train(neg_file, pos_file):
    #打开消极数据文件
    neg = codecs.open(neg_file, 'r', 'utf-8').readlines()
    pos = codecs.open(pos_file, 'r', 'utf-8').readlines()
    neg_docs = []
    pos_docs = []
    #遍历每一条消极评论,放入到list中
    for line in neg:
        neg_docs.append(line.rstrip("\r\n"))
    #遍历每一条积极评论,放入到list中
    for line in pos:
        pos_docs.append(line.rstrip("\r\n"))
    global classifier
    classifier = Sentiment()
    #训练数据,传入积极、消极评论list
    classifier.train(neg_docs, pos_docs)
 
#保存数据字典
def save(fname, iszip=True):
    classifier.save(fname, iszip)
 
#加载数据字典
def load(fname, iszip=True):
    classifier.load(fname, iszip)
 
#对语句进行分类
def classify(sent):
    return classifier.classify(sent)

sentiment中包含了训练数据集的方法,看一下是如何训练数据集的:
在sentiment文件夹下,包含了如下文件:测试

neg.txt和pos.txt是已经分类好的评论数据,neg.txt中都是消极评论,pos中是积极评论人工智能

sentiment.marshal和sentiment.marshal.3中存放的是序列化后的数据字典,这个也稍后再说

(1)在train()方法中,首先读取消极和积极评论txt文件,而后获取每一条评论,放入到list集合中,格式大体以下

[ ' 尚未收到书!!!尚未收到书 ' , ' 小熊宝宝我以为孩子不喜欢,能换别的吗 ' , ......]

#训练数据
def train(neg_file, pos_file):
    #打开消极数据文件
    neg = codecs.open(neg_file, 'r', 'utf-8').readlines()
    pos = codecs.open(pos_file, 'r', 'utf-8').readlines()
    neg_docs = []
    pos_docs = []
    #遍历每一条消极评论,放入到list中
    for line in neg:
        neg_docs.append(line.rstrip("\r\n"))
    #遍历每一条积极评论,放入到list中
    for line in pos:
        pos_docs.append(line.rstrip("\r\n"))
    global classifier
    classifier = Sentiment()
    #训练数据,传入积极、消极评论list
    classifier.train(neg_docs, pos_docs)

而后调用了Sentiment对象中的train()方法:
在train方法中,遍历了传入的积极、消极评论list,为每条评论进行分词,并为加上了分类标签,此时的数据格式以下:

评论分词后的数据格式:['收到','没有'...]

加上标签后的数据格式(以消极评论为例):[ [['收到','没有' ...],'neg'] ,  [['小熊','宝宝' ...],‘neg’] ........]]

能够看到每一条评论都是一个list,其中又包含了评论分词后的list和评论的分类标签

# 训练数据集
    def train(self, neg_docs, pos_docs):
        data = []
        #读取消极评论list,对每条评论分词,并加上neg标签,也放入到一个list中
        for sent in neg_docs:
            data.append([self.handle(sent), 'neg'])
        #读取积极评论list,为每条评论分词,加上pos标签
        for sent in pos_docs:
            data.append([self.handle(sent), 'pos'])
        #调用分类器的训练数据集方法,对模型进行训练
        self.classifier.train(data)

通过了此步骤,已经对数据处理完毕,接下来就能够对数据进行训练

 3.classification下的bayes.py

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
 
import sys
import gzip
import marshal
from math import log, exp
 
from ..utils.frequency import AddOneProb
 
 
class Bayes(object):
 
    def __init__(self):
        #标签数据对象
        self.d = {}
        #全部分类的词数之和
        self.total = 0
 
    #保存字典数据
    def save(self, fname, iszip=True):
        #建立对象,用来存储训练结果
        d = {}
        #添加total,也就是积极消极评论分词总词数
        d['total'] = self.total
        #d为分类标签,存储每一个标签的数据对象
        d['d'] = {}
        for k, v in self.d.items():
            #k为分类标签,v为标签对应的全部分词数据,是一个AddOneProb对象
            d['d'][k] = v.__dict__
        #这里判断python版本
        if sys.version_info[0] == 3:
            fname = fname + '.3'
        #这里可有两种方法能够选择进行存储
        if not iszip:
            ##将序列化后的二进制数据直接写入文件
            marshal.dump(d, open(fname, 'wb'))
        else:
            #首先获取序列化后的二进制数据,而后写入文件
            f = gzip.open(fname, 'wb')
            f.write(marshal.dumps(d))
            f.close()
 
    #加载数据字典
    def load(self, fname, iszip=True):
        #判断版本
        if sys.version_info[0] == 3:
            fname = fname + '.3'
        #判断打开文件方式
        if not iszip:
            d = marshal.load(open(fname, 'rb'))
        else:
            try:
                f = gzip.open(fname, 'rb')
                d = marshal.loads(f.read())
            except IOError:
                f = open(fname, 'rb')
                d = marshal.loads(f.read())
            f.close()
        #从文件中读取数据,为total和d对象赋值
        self.total = d['total']
        self.d = {}
        for k, v in d['d'].items():
            self.d[k] = AddOneProb()
            self.d[k].__dict__ = v
 
    #训练数据集
    def train(self, data):
        #遍历数据集
        for d in data:
            #d[1]标签-->分类类别
            c = d[1]
            #判断数据字典中是否有当前的标签
            if c not in self.d:
                #若是没有该标签,加入标签,值是一个AddOneProb对象
                self.d[c] = AddOneProb()
            #d[0]是评论的分词list,遍历分词list
            for word in d[0]:
                #调用AddOneProb中的add方法,添加单词
                self.d[c].add(word, 1)
        #计算总词数
        self.total = sum(map(lambda x: self.d[x].getsum(), self.d.keys()))
 
    #贝叶斯分类
    def classify(self, x):
        tmp = {}
        #遍历每一个分类标签
        for k in self.d:
            #获取每一个分类标签下的总词数和全部标签总词数,求对数差至关于log(某标签下的总词数/全部标签总词数)
            tmp[k] = log(self.d[k].getsum()) - log(self.total)
            for word in x:
                #获取每一个单词出现的频率,log[(某标签下的总词数/全部标签总词数)*单词出现频率]
                tmp[k] += log(self.d[k].freq(word))
        #计算几率,因为直接获得的几率值比较小,这里应该使用了一种方法来转换,原理还不是很明白
        ret, prob = 0, 0
        for k in self.d:
            now = 0
            try:
                for otherk in self.d:
                    now += exp(tmp[otherk]-tmp[k])
                now = 1/now
            except OverflowError:
                now = 0
            if now > prob:
                ret, prob = k, now
        return (ret, prob)
from . import good_turing
 
class BaseProb(object):
 
    def __init__(self):
        self.d = {}
        self.total = 0.0
        self.none = 0
 
    def exists(self, key):
        return key in self.d
 
    def getsum(self):
        return self.total
 
    def get(self, key):
        if not self.exists(key):
            return False, self.none
        return True, self.d[key]
 
    def freq(self, key):
        return float(self.get(key)[1])/self.total
 
    def samples(self):
        return self.d.keys()
 
 
class NormalProb(BaseProb):
 
    def add(self, key, value):
        if not self.exists(key):
            self.d[key] = 0
        self.d[key] += value
        self.total += value
 
 
class AddOneProb(BaseProb):
 
    def __init__(self):
        self.d = {}
        self.total = 0.0
        self.none = 1
 
    #添加单词
    def add(self, key, value):
        #更新该类别下的单词总数
        self.total += value
        #若是单词未出现过
        if not self.exists(key):
            #将单词加入对应标签的数据字典中,value设为1
            self.d[key] = 1
            #更新总词数
            self.total += 1
        #若是单词出现过,对该单词的value值加1
        self.d[key] += value

在bayes对象中,有两个属性d和total,d是一个数据字典,total存储全部分类的总词数,通过train方法训练数据集后,d中存储的是每一个分类标签的数据key为分类标签,value是一个AddOneProb对象。

def __init__(self):
        self.d = {}
        self.total = 0.0

在AddOneProb对象中,一样存在d和total属性,这里的total存储的是每一个分类各自的单词总数,d中存储的是全部出现过的单词,单词做为key,单词出现的次数做为value.
为了下次计算几率时,不用从新训练,能够将训练获得的数据序列化到文件中,下次直接加载文件,将文件反序列为对象,从对象中获取数据便可(save和load方法)。

4.获得训练数据后,使用朴素贝叶斯分类进行分类

该方法可自行查阅。

相关文章
相关标签/搜索