CentOS7.X安装英伟达显卡采坑之路

一、系统信息

操做系统版本:CentOS7.Xpython

显卡版本:英伟达 Tesla P100linux

其余软件包安装信息:git

  • CUDA 9.0
  • CUDNN 7.4.2.24
  • lightgbm 2.2.X
  • Boost 1.61
  • CMake 3.12

特别说明,若是没有在官网找到你的显卡版本对应的驱动,请尽快寻找你的显卡提供商确认驱动信息,不要轻易尝试;那就是在浪费时间,切记!github

二、安装P100驱动

这里安装P100驱动的方式,经过Yum Rpm包的安装方式,其余相关的Linux系统能够经过对应的包管理或者二进制的方式安装,若是是CentOS系统,咱们很是推荐使用Yum进行安装。shell

2.1 查看显卡信息

咱们能够经过查看pci的接口,确认显卡信息,以及是否识别出显卡,固然默认没有这个工具,咱们须要安装;安装方式以下:bootstrap

yum install pciutils -y

能够经过过滤VGA来精确信息:服务器

lspci|grep -i vga

2.2 安装显卡驱动

这里咱们经过wget在线下载驱动,经过rpm安装载入到系统中:工具

wget http://cn.download.nvidia.com/tesla/410.79/nvidia-diag-driver-local-repo-rhel7-410.79-1.0-1.x86_64.rpm
rpm -ivh nvidia-diag-driver-local-repo-rhel7-410.79-1.0-1.x86_64.rpm

在往下走以前咱们须要配置epel源,便于后面安装dkms开发工具

yum install epel-*

经过Yum安装,目前这是最简单的方式,若是你想挑战也能够采用二进制tarall的方式:测试

yum install dkms -y
yum install nvidia* -y

最后为了生效,咱们须要重启操做系统:

reboot

每每重启后,你不肯定是否成功,那若是去查看信息呢,我推荐经过一下三个步骤:

lspci | grep -i nv         # 查看是否加载驱动配置
lsmod | grep -i nouveau    # 是否关闭了默认显卡驱动
dmesg | grep NVRM          # 查看开启加载是否有异常信息

到了这里,成责成,不成你就要日志了,别照着网上文章乱搞。

三、开发工具包安装

只有驱动仍是不够的,咱们换须要一个些工具包便于咱们使用,其中 CUDA、CUDNN就是咱们要安装的包。

3.1 CUDA工具包安装

导入官方CUDA包

rpm -ivh http://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-repo-rhel7-9.0.176-1.x86_64.rpm

经过Yum安装便可

yum install cuda-9.0.176-1

咱们推荐不要安装太新的,好多组件不必定可以支持。

查看版本技巧:yum search --showduplicates cuda

3.2 CUDNN安装

PS:下载CUDNN,你可能须要一个会员,须要登陆才可以下载

Download下载地址: https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.4.2/prod/9.0_20181213/cudnn-9.0-linux-x64-v7.4.2.24.tgz

上传到服务器上后,解压Copy对应的库文件便可(这里咱们默认你已经回上传文件到服务之上):

tar xf cudnn-9.0-linux-x64-v7.4.2.24.solitairetheme8 
cp cuda/include/cudnn.h /usr/local/cuda/include
cp -a cuda/lib/* /usr/local/cuda/lib64/

四、lightgbm安装

这个安装对于CentOS7的系统是很是坑的,必需要来编译原声的组件,编译失败的因素不少,你准备好了?

4.1 OpenGL安装

安装OpenGL,默认状况下CUDA安装时已经安装,因此无需单独安装;(特别注意,有时候会遇到软链接丢失形成找不到so库文件),解决方法就是补全软链接便可了。

PS:补全方式,相似常规方法,经过ln 命令模拟确实的so文件便可。

4.2 Boost安装

安装前,你须要安装一些依赖,来保证后面的步骤可以顺序执行(我并不能保证你按照个人方式必定会成功,但至少我成功了,若是出错你须要详细检查报错信息+你的机智来解决问题)

yum install wget gcc python python python-devel -y

安装命令以下,你能够直接Copy执行(在Root身份下)

cd /usr/local/src
wget https://sourceforge.net/projects/boost/files/boost/1.61.0/boost_1_61_0.tar.gz
tar xf boost_1_61_0.tar.gz 
cd boost_1_61_0
./bootstrap.sh --prefix=/usr/local/include/boost
./b2 install

咱们还须要安装tools工具,放心这个不会报错,锦上添花的功能:

cd tools/build/
./b2 install --prefix=/usr/local/include/boost

4.3 CMake安装

没有什么特别好说的,常规操做(你在Root身份下直接复制便可):

cd /usr/local/src
wget https://cmake.org/files/v3.12/cmake-3.12.0-rc1.tar.gz
tar -zxf cmake-3.12.0-rc1.tar.gz
cd cmake-3.12.0-rc1
./bootstrap
gmake -j $(nproc)
gmake install

检查是否成功与查看版本:

cmake --version

4.4 正文lightgbm

PS:开始前,咱们认为已经安装了Python3的环境,固然Python2也是能够的,不过你须要作好心理准备。

命令以下:建议Root用户或等同权利的用户执行

cd /usr/local/src/
git clone --recursive https://github.com/Microsoft/LightGBM ; cd LightGBM
mkdir build ; cd build
cmake -DUSE_GPU=1 ..
make -j 12
cd ../python-package/
python3 setup.py install

将so动态库Copy到系统之中,自行操做,不在演示。

4.5 测试

安装基础测试数据包:

pip3 install wheel numpy scipy scikit-learn -U -i https://pypi.doubanio.com/simple

下载解析处理数据:

cd /usr/local/src
git clone https://github.com/guolinke/boosting_tree_benchmarks.git
cd boosting_tree_benchmarks/data
wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz"
gunzip HIGGS.csv.gz
python3 higgs2libsvm.py

PS: 这里你可能会遇到xrange错误,由于Python3已经没有xrange,这里修改成range便可。

建立测试数据:

cat > lightgbm_gpu.conf <<EOF
max_bin = 63
num_leaves = 255
num_iterations = 50
learning_rate = 0.1
tree_learner = serial
task = train
is_training_metric = false
min_data_in_leaf = 1
min_sum_hessian_in_leaf = 100
ndcg_eval_at = 1,3,5,10
sparse_threshold = 1.0
device = gpu
gpu_platform_id = 0
gpu_device_id = 0
EOF
echo "num_threads=$(nproc)" >> lightgbm_gpu.conf

测试命令以下:

# Run of GPU
/usr/local/src/LightGBM/lightgbm config=lightgbm_gpu.conf data=higgs.train valid=higgs.test objective=binary metric=auc 
# Run of CPU
/usr/local/src/LightGBM/lightgbm config=lightgbm_gpu.conf data=higgs.train valid=higgs.test objective=binary metric=auc device=cpu

这里能够将生成的lightgbm命令与So文件Copy到系统之中方便后期使用。

五、小结

看到这里说明你已经成功了,是否是很Easy,固然若是你没搞定回头看看错误信息;个人这个博文你不必定可以成功,至少我成功过了,切记不要根据网上的帖子乱搞。

相关文章
相关标签/搜索