Happy Necklace
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 863 Accepted Submission(s): 383
phpProblem DescriptionLittle Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of multiple red and blue beads.
Little Q desperately wants to impress his girlfriend, he knows that she will like the necklace only if for every prime length continuous subsequence in the necklace, the number of red beads is not less than the number of blue beads.
Now Little Q wants to buy a necklace with exactly n beads. He wants to know the number of different necklaces that can make his girlfriend happy. Please write a program to help Little Q. Since the answer may be very large, please print the answer modulo 109+7.
Note: The necklace is a single string, {not a circle}.
InputThe first line of the input contains an integer T(1≤T≤10000), denoting the number of test cases.
For each test case, there is a single line containing an integer n(2≤n≤1018), denoting the number of beads on the necklace.
OutputFor each test case, print a single line containing a single integer, denoting the answer modulo 109+7.
Sample Input2 2 3
Sample Output3 4
Source
求得 A =ios
【AC代码】app
/* 矩阵快速幂模板 by chsobin */ #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long ll; const int maxn = 3; const ll mod = 1e9 + 7; //矩阵结构体 struct Matrix{ ll a[maxn][maxn]; void init(){ //初始化为单位矩阵 memset(a, 0, sizeof(a)); for(int i=0;i<maxn;++i){ a[i][i] = 1; } } }; //矩阵乘法 Matrix mul(Matrix a, Matrix b){ Matrix ans; for(int i=0;i<maxn;++i){ for(int j=0;j<maxn;++j){ ans.a[i][j] = 0; for(int k=0;k<maxn;++k){ ans.a[i][j] += a.a[i][k] * b.a[k][j]; ans.a[i][j] %= mod; } } } return ans; } //矩阵快速幂 Matrix qpow(Matrix a, ll n){ Matrix ans; ans.init(); while(n){ if(n&1) ans = mul(ans, a); a = mul(a, a); n /= 2; } return ans; } ////for debug //void output(Matrix a){ // for(int i=0;i<maxn;++i){ // for(int j=0;j<maxn;++j){ // cout << a.a[i][j] << " "; // } // cout << endl; // } //} int main(){ Matrix A = { 1,1,0,0,0,1,1,0,0 }; //递推矩阵 int t; cin >> t; ll n; int ans[5] = {0, 0, 3, 4, 6}; //枚举初始状况 while(t--){ cin >> n; if(n<=4) cout << ans[n] << endl; else{ Matrix m = qpow(A , n-4); ll temp = 6 * m.a[0][0] % mod; temp = (temp + 4 * m.a[1][0]%mod)%mod; temp = (temp + 3 * m.a[2][0]%mod)%mod; cout << temp << endl; } } return 0; }
【总结】:less
看到数据量就明白了这一类题的作法ide
1.打表atom
2.根据打表结果,写出递推方程。spa
3.将递推方程构造为矩阵。debug
4.快速幂求解。设计