MySQL凭借着出色的性能、低廉的成本、丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库。虽然性能出色,但所谓“好马配好鞍”,如何可以更好的使用它,已经成为开发工程师的必修课,咱们常常会从职位描述上看到诸如“精通MySQL”、“SQL语句优化”、“了解数据库原理”等要求。咱们知道通常的应用系统,读写比例在10:1左右,并且插入操做和通常的更新操做不多出现性能问题,遇到最多的,也是最容易出问题的,仍是一些复杂的查询操做,因此查询语句的优化显然是重中之重。
随着业务的复杂性提高,遇到的问题千奇百怪,五花八门,匪夷所思。本文旨在以开发工程师的角度来解释数据库索引的原理和如何优化慢查询。html
select count(*) from task where status=2 and operator_id=20839 and operate_time>1371169729 and operate_time<1371174603 and type=2;
系统使用者反应有一个功能愈来愈慢,因而工程师找到了上面的SQL。
而且兴致冲冲的找到了我,“这个SQL须要优化,给我把每一个字段都加上索引”
我很惊讶,问道“为何须要每一个字段都加上索引?”
“把查询的字段都加上索引会更快”工程师信心满满
“这种状况彻底能够建一个联合索引,由于是最左前缀匹配,因此operate_time须要放到最后,并且还须要把其余相关的查询都拿来,须要作一个综合评估。”
“联合索引?最左前缀匹配?综合评估?”工程师不由陷入了沉思。
多数状况下,咱们知道索引可以提升查询效率,但应该如何创建索引?索引的顺序如何?许多人却只知道大概。其实理解这些概念并不难,并且索引的原理远没有想象的那么复杂。node
##索引目的
索引的目的在于提升查询效率,能够类比字典,若是要查“mysql”这个单词,咱们确定须要定位到m字母,而后从下往下找到y字母,再找到剩下的sql。若是没有索引,那么你可能须要把全部单词看一遍才能找到你想要的,若是我想找到m开头的单词呢?或者ze开头的单词呢?是否是以为若是没有索引,这个事情根本没法完成?mysql
##索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是同样的,经过不断的缩小想要得到数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是咱们老是经过同一种查找方式来锁定数据。
数据库也是同样,但显然要复杂许多,由于不只面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对全部的问题呢?咱们回想字典的例子,能不能把数据分红段,而后分段查询呢?最简单的若是1000条数据,1到100分红第一段,101到200分红第二段,201到300分红第三段......这样查第250条数据,只要找第三段就能够了,一会儿去除了90%的无效数据。但若是是1千万的记录呢,分红几段比较好?稍有算法基础的同窗会想到搜索树,其平均复杂度是lgN,具备不错的查询性能。但这里咱们忽略了一个关键的问题,复杂度模型是基于每次相同的操做成原本考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提升性能,每次又能够把部分数据读入内存来计算,由于咱们知道访问磁盘的成本大概是访问内存的十万倍左右,因此简单的搜索树难以知足复杂的应用场景。算法
###磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间能够分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所须要的时间,主流磁盘通常在5ms如下;旋转延迟就是咱们常常据说的磁盘转速,好比一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,通常在零点几毫秒,相对于前两个时间能够忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒能够执行5亿条指令,由于指令依靠的是电的性质,换句话说执行一次IO的时间能够执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供你们参考:
考虑到磁盘IO是很是高昂的操做,计算机操做系统作了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,由于局部预读性原理告诉咱们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据咱们称之为一页(page)。具体一页有多大数据跟操做系统有关,通常为4k或8k,也就是咱们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计很是有帮助。sql
###索引的数据结构
前面讲了生活中索引的例子,索引的基本原理,数据库的复杂性,又讲了操做系统的相关知识,目的就是让你们了解,任何一种数据结构都不是凭空产生的,必定会有它的背景和使用场景,咱们如今总结一下,咱们须要这种数据结构可以作些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么咱们就想到若是一个高度可控的多路搜索树是否能知足需求呢?就这样,b+树应运而生。数据库
###详解b+树
如上图,是一颗b+树,关于b+树的定义能够参见B+树,这里只说一些重点,浅蓝色的块咱们称之为一个磁盘块,能够看到每一个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P一、P二、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即三、五、九、十、1三、1五、2八、2九、3六、60、7五、7九、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如1七、35并不真实存在于数据表中。数据结构
###b+树的查找过程
如图所示,若是要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找肯定29在17和35之间,锁定磁盘块1的P2指针,内存时间由于很是短(相比磁盘的IO)能够忽略不计,经过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,经过指针加载磁盘块8到内存,发生第三次IO,同时内存中作二分查找找到29,结束查询,总计三次IO。真实的状况是,3层的b+树能够表示上百万的数据,若是上百万的数据查找只须要三次IO,性能提升将是巨大的,若是没有索引,每一个数据项都要发生一次IO,那么总共须要百万次的IO,显然成本很是很是高。函数
###b+树性质
1.经过上面的分析,咱们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每一个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N必定的状况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,若是数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为何每一个数据项,即索引字段要尽可能的小,好比int占4字节,要比bigint8字节少一半。这也是为何b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度降低,致使树增高。当数据项等于1时将会退化成线性表。
2.当b+树的数据项是复合的数据结构,好比(name,age,sex)的时候,b+数是按照从左到右的顺序来创建搜索树的,好比当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来肯定下一步的所搜方向,若是name相同再依次比较age和sex,最后获得检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪一个节点,由于创建搜索树的时候name就是第一个比较因子,必需要先根据name来搜索才能知道下一步去哪里查询。好比当(张三,F)这样的数据来检索时,b+树能够用name来指定搜索方向,但下一个字段age的缺失,因此只能把名字等于张三的数据都找到,而后再匹配性别是F的数据了, 这个是很是重要的性质,即索引的最左匹配特性。oop
关于MySQL索引原理是比较枯燥的东西,你们只须要有一个感性的认识,并不须要理解得很是透彻和深刻。咱们回头来看看一开始咱们说的慢查询,了解完索引原理以后,你们是否是有什么想法呢?先总结一下索引的几大基本原则性能
1.最左前缀匹配原则,很是重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就中止匹配,好比a = 1 and b = 2 and c > 3 and d = 4 若是创建(a,b,c,d)顺序的索引,d是用不到索引的,若是创建(a,b,d,c)的索引则均可以用到,a,b,d的顺序能够任意调整。
2.=和in能够乱序,好比a = 1 and b = 2 and c = 3 创建(a,b,c)索引能够任意顺序,mysql的查询优化器会帮你优化成索引能够识别的形式
3.尽可能选择区分度高的列做为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大咱们扫描的记录数越少,惟一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不一样,这个值也很难肯定,通常须要join的字段咱们都要求是0.1以上,即平均1条扫描10条记录
4.索引列不能参与计算,保持列“干净”,好比from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,缘由很简单,b+树中存的都是数据表中的字段值,但进行检索时,须要把全部元素都应用函数才能比较,显然成本太大。因此语句应该写成create_time = unix_timestamp(’2014-05-29’);
5.尽可能的扩展索引,不要新建索引。好比表中已经有a的索引,如今要加(a,b)的索引,那么只须要修改原来的索引便可
根据最左匹配原则,最开始的sql语句的索引应该是status、operator_id、type、operate_time的联合索引;其中status、operator_id、type的顺序能够颠倒,因此我才会说,把这个表的全部相关查询都找到,会综合分析;
好比还有以下查询
select * from task where status = 0 and type = 12 limit 10;
select count(*) from task where status = 0 ;
那么索引创建成(status,type,operator_id,operate_time)就是很是正确的,由于能够覆盖到全部状况。这个就是利用了索引的最左匹配的原则
关于explain命令相信你们并不陌生,具体用法和字段含义能够参考官网explain-output,这里须要强调rows是核心指标,绝大部分rows小的语句执行必定很快(有例外,下面会讲到)。因此优化语句基本上都是在优化rows。
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每一个字段分别查询,看哪一个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析
下面几个例子详细解释了如何分析和优化慢查询
不少状况下,咱们写SQL只是为了实现功能,这只是第一步,不一样的语句书写方式对于效率每每有本质的差异,这要求咱们对mysql的执行计划和索引原则有很是清楚的认识,请看下面的语句
select distinct cert.emp_id from cm_log cl inner join ( select emp.id as emp_id, emp_cert.id as cert_id from employee emp left join emp_certificate emp_cert on emp.id = emp_cert.emp_id where emp.is_deleted=0 ) cert on ( cl.ref_table='Employee' and cl.ref_oid= cert.emp_id ) or ( cl.ref_table='EmpCertificate' and cl.ref_oid= cert.cert_id ) where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00';
0.先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢
53 rows in set (1.87 sec)
1.explain
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer | | 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where | | 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表得到379条记录;而后查表扫描了63727条记录,分为两部分,derived表示构造表,也就是不存在的表,能够简单理解成是一个语句造成的结果集,后面的数字表示语句的ID。derived2表示的是ID = 2的查询构造了虚拟表,而且返回了63727条记录。咱们再来看看ID = 2的语句究竟作了写什么返回了这么大量的数据,首先全表扫描employee表13317条记录,而后根据索引emp_certificate_empid关联emp_certificate表,rows = 1表示,每一个关联都只锁定了一条记录,效率比较高。得到后,再和cm_log的379条记录根据规则关联。从执行过程上能够看出返回了太多的数据,返回的数据绝大部分cm_log都用不到,由于cm_log只锁定了379条记录。
如何优化呢?能够看到咱们在运行完后仍是要和cm_log作join,那么咱们能不能以前和cm_log作join呢?仔细分析语句不难发现,其基本思想是若是cm_log的ref_table是EmpCertificate就关联emp_certificate表,若是ref_table是Employee就关联employee表,咱们彻底能够拆成两部分,并用union链接起来,注意这里用union,而不用union all是由于原语句有“distinct”来获得惟一的记录,而union刚好具有了这种功能。若是原语句中没有distinct不须要去重,咱们就能够直接使用union all了,由于使用union须要去重的动做,会影响SQL性能。
优化过的语句以下
select emp.id from cm_log cl inner join employee emp on cl.ref_table = 'Employee' and cl.ref_oid = emp.id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0 union select emp.id from cm_log cl inner join emp_certificate ec on cl.ref_table = 'EmpCertificate' and cl.ref_oid = ec.id inner join employee emp on emp.id = ec.emp_id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0
4.不须要了解业务场景,只须要改造的语句和改造以前的语句保持结果一致
5.现有索引能够知足,不须要建索引
6.用改造后的语句实验一下,只须要10ms 下降了近200倍!
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where | | 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | | | 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where | | NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ 53 rows in set (0.01 sec)
举这个例子的目的在于颠覆咱们对列的区分度的认知,通常上咱们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的状况下,这种理论是有局限性的,相似于block_id,即便区分度不高,但也要用做索引。
select * from stage_poi sp where sp.accurate_result=1 and ( sp.sync_status=0 or sp.sync_status=2 or sp.sync_status=4 );
0.先看看运行多长时间,951条数据6.22秒,真的很慢
951 rows in set (6.22 sec)
1.先explain,rows达到了361万,type = ALL代表是全表扫描
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
2.全部字段都应用查询返回记录数,由于是单表查询 0已经作过了951条
3.让explain的rows 尽可能逼近951
看一下accurate_result = 1的记录数
select count(*),accurate_result from stage_poi group by accurate_result; +----------+-----------------+ | count(*) | accurate_result | +----------+-----------------+ | 1023 | -1 | | 2114655 | 0 | | 972815 | 1 | +----------+-----------------+
咱们看到accurate_result这个字段的区分度很是低,整个表只有-1,0,1三个值,加上索引也没法锁定特别少许的数据
再看一下sync_status字段的状况
select count(*),sync_status from stage_poi group by sync_status; +----------+-------------+ | count(*) | sync_status | +----------+-------------+ | 3080 | 0 | | 3085413 | 3 | +----------+-------------+
一样的区分度也很低,根据理论,也不适合创建索引
问题分析到这,好像得出了这个表没法优化的结论,两个列的区分度都很低,即使加上索引也只能适应这种状况,很难作广泛性的优化,好比当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的
4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,由于业务方保证了数据的不平衡,若是加上索引能够过滤掉绝大部分不须要的数据
5.根据创建索引规则,使用以下语句创建索引
alter table stage_poi add index idx_acc_status(accurate_result,sync_status);
6.观察预期结果,发现只须要200ms,快了30多倍。
952 rows in set (0.20 sec)
咱们再来回顾一下分析问题的过程,单表查询相对来讲比较好优化,大部分时候只须要把where条件里面的字段依照规则加上索引就好,若是只是这种“无脑”优化的话,显然一些区分度很是低的列,不该该加索引的列也会被加上索引,这样会对插入、更新性能形成严重的影响,同时也有可能影响其它的查询语句。因此咱们第4步调差SQL的使用场景很是关键,咱们只有知道这个业务场景,才能更好地辅助咱们更好的分析和优化查询语句。
select c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 order by c.created_time desc limit 0 , 10;
仍是几个步骤
0.先看语句运行多长时间,10条记录用了13秒,已经不可忍受
10 rows in set (13.06 sec)
1.explain
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index | | 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。
rows返回的都很是少,看不到有什么异常状况。咱们在看一下语句,发现后面有order by + limit组合,会不会是排序量太大搞的?因而咱们简化SQL,去掉后面的order by 和 limit,看看到底用了多少记录来排序
select count(*) from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 +----------+ | count(*) | +----------+ | 778878 | +----------+ 1 row in set (5.19 sec)
发现排序以前竟然锁定了778878条记录,若是针对70万的结果集排序,将是灾难性的,怪不得这么慢,那咱们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢?
因而改形成下面的语句,也能够用straight_join来优化
select
c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
where
exists (
select
1
from
contact_branch cb
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 10802
and oei.org_category = - 1
where
c.id = cb.contact_id
)
order by
c.created_time desc limit 0 ,
10;
验证一下效果 预计在1ms内,提高了13000多倍! ```sql 10 rows in set (0.00 sec)
本觉得至此大工告成,但咱们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是同样的,为什么提高这么可能是由于有一个limit!大体执行过程是:mysql先按索引排序获得前10条记录,而后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据很是多的时候,将是灾难的,极端状况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!
用不一样参数的SQL试验下
select sql_no_cache c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 2875 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0 , 10; Empty set (2 min 18.99 sec)
2 min 18.99 sec!比以前的状况还糟糕不少。因为mysql的nested loop机制,遇到这种状况,基本是没法优化的。这条语句最终也只能交给应用系统去优化本身的逻辑了。
经过这个例子咱们能够看到,并非全部语句都能优化,而每每咱们优化时,因为SQL用例回归时落掉一些极端状况,会形成比原来还严重的后果。因此,第一:不要期望全部语句都能经过SQL优化,第二:不要过于自信,只针对具体case来优化,而忽略了更复杂的状况。
慢查询的案例就分析到这儿,以上只是一些比较典型的案例。咱们在优化过程当中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差别致使应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,若是咱们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。
本文以一个慢查询案例引入了MySQL索引原理、优化慢查询的一些方法论;并针对遇到的典型案例作了详细的分析。其实作了这么长时间的语句优化后才发现,任何数据库层面的优化都抵不上应用系统的优化,一样是MySQL,能够用来支撑Google/FaceBook/Taobao应用,但可能连你的我的网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!”
修改自 https://tech.meituan.com/mysql-index.html