url:https://en.wikipedia.org/wiki...python
In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric method used for classification and regression.[1] In both cases, the input consists of the k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression:In k-NN classification, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor.app
In k-NN regression, the output is the property value for the object. This value is the average of the values of its k nearest neighbors.url
其实简单理解就是:经过计算新加入点与附近K个点的距离,而后寻找到距离最近的K个点,进行占比统计,找到k个点中数量占比最高的target,那么新加入的样本,它的target就是频数最高的target
语言:python3
欧拉距离:spa
# -*- coding: utf-8 -*- """ Created on Sat Mar 17 11:17:18 2018 @author: yangzinan """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from math import sqrt from collections import Counter # 样本 x= [ [3.393533211,2.331273381], [3.110073483,1.781539638], [1.343808831,3.368360954], [3.582294042,4.679179110], [2.280362439,2.866990263], [7.423436942,4.696522875], [5.745051997,3.533989803], [9.172168622,2.511101045], [7.792783481,3.424088941], [7.939820817,0.791637231] ] y= [0,0,0,0,0,1,1,1,1,1] x_train = np.array(x) y_train = np.array(y) # 绘图 plt.scatter(x_train[y_train==0,0],x_train[y_train==0,1],color="red") plt.scatter(x_train[y_train==1,0],x_train[y_train==1,1],color="green") x_point = np.array([8.093607318,3.365731514]) plt.scatter(x_point[0],x_point[1],color="blue") plt.show() #计算距离 欧拉距离 distances = [] for d in x_train: # 求出和x相差的距离 d_sum = sqrt(np.sum(((d-x)**2))) distances.append(d_sum) print(distances) #求出最近的点 #按照从小到大的顺序,获得下标 nearest = np.argsort(distances) #指定应该求出的个数 k = 3 topK_y = [] #求出前K个target for i in nearest[:k]: topK_y.append(y_train[i]) #获得频数最高的target,那么新加入点target 就是频数最高的 predict_y = Counter(topK_y).most_common(1)[0][0] print(predict_y)