【赵强老师】在Spark SQL中读取JSON文件

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫作DataFrame而且做为分布式SQL查询引擎的做用。为何要学习Spark SQL?若是你们了解Hive的话,应该知道它是将Hive SQL转换成MapReduce而后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,因为MapReduce这种计算模型执行效率比较慢。因此Spark SQL的应运而生,它是将Spark SQL转换成RDD,而后提交到集群执行,执行效率很是快!同时Spark SQL也支持从Hive中读取数据。
Spark SQL也能自动解析JSON数据集的Schema,读取JSON数据集为DataFrame格式。读取JSON数据集方法为SQLContext.read().json()。该方法将String格式的RDD或JSON文件转换为DataFrame。
须要注意的是,这里的JSON文件不是常规的JSON格式。JSON文件每一行必须包含一个独立的、自知足有效的JSON对象。若是用多行描述一个JSON对象,会致使读取出错。
  • 须要用到的测试数据:people.json
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19} 
  • 定义路径
val path ="/root/temp/people.json" 
  • 读取Json文件,生成DataFrame:
val peopleDF = spark.read.json(path) 
  • 打印Schema结构信息
peopleDF.printSchema()

 

  • 建立临时视图
peopleDF.createOrReplaceTempView("people") 
  • 执行查询
spark.sql("SELECT name FROM people WHERE age=19").show

 

相关文章
相关标签/搜索