Celery 分布式任务队列入门

1、Celery介绍和基本使用 

Celery 是一个 基于python开发的分布式异步消息任务队列,经过它能够轻松的实现任务的异步处理, 若是你的业务场景中须要用到异步任务,就能够考虑使用celery, 举几个实例场景中可用的例子:python

  1. 你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,你过一段时间只须要拿着这个任务id就能够拿到任务执行结果, 在任务执行ing进行时,你能够继续作其它的事情。 
  2. 你想作一个定时任务,好比天天检测一下大家全部客户的资料,若是发现今天 是客户的生日,就给他发个短信祝福

 

Celery 在执行任务时须要经过一个消息中间件来接收和发送任务消息,以及存储任务结果, 通常使用rabbitMQ or Redis,后面会讲redis

1.1 Celery有如下优势:数据库

  1. 简单:一单熟悉了celery的工做流程后,配置和使用仍是比较简单的
  2. 高可用:当任务执行失败或执行过程当中发生链接中断,celery 会自动尝试从新执行任务
  3. 快速:一个单进程的celery每分钟可处理上百万个任务
  4. 灵活: 几乎celery的各个组件均可以被扩展及自定制

Celery基本工做流程图django

 

 

1.2 Celery安装使用

Celery的默认broker是RabbitMQ, 我这里使用redis,仅需配置一行就能够浏览器

 
broker_url ='amqp://guest:guest@localhost:5672//'

 

使用Redis作broker也能够app

broker_url = 'redis://:password@localhost:6379'  

 注意:celery任务队列执行使用的中间件和取结果的中间件是彼此分离的,在使用中都须要各自配置异步

1. 3 开始使用Celery啦  

安装celery模块

pip3 install celery

 

建立一个celery application 用来定义你的任务列表分布式

建立一个任务文件就叫tasks.py吧ide

from celery import Celery
 
#app是一个worker,负责执行任务,多个worker执行时,任务执行顺序为抢占式,并不会按照相似于rabbitmq分配任务 app = Celery('tasks', broker='redis://:password@localhost', #执行任务中间件 backend='redis://:password@localhost') #保存结果中间件 @app.task def add(x,y): #这是worker能够执行的一个任务 print("running...",x,y) return x+y

 启动Celery Worker来开始监听并执行任务 函数

celery -A celery_test worker -l debug

 打印结果以下:

上面显示配置信息

下面红线内为自定义任务:

 调用任务

再打开一个终端, 进行命令行模式,调用任务

>>> from celery_test import add
>>> add.delay(4, 4)

看你的worker终端会显示收到 一个任务,此时你想看任务结果的话,须要在调用 任务时 赋值个变量

>>> result = add.delay(4, 4)  

 若是想查看任务是否完成,可调用下面命令,返回布尔值

>>> result.ready()  

 想拿到任务执行结果,调用下面命令(注意:想拿到结果首先得配置接收任务的中间件,不然会报错)

result.get()  

2、在项目中如何使用celery 

能够把celery配置成一个应用 

目录格式以下

proj/__init__.py
    /celery.py   #配置信息
    /tasks.py    #任务

 配置结果以下: 

 

编辑proj/celery.py文件:

from __future__ import absolute_import, unicode_literals  #声明celery从python包绝对路径里导入celery包
from celery import Celery
 
app = Celery('proj',
             broker='amqp://',
             backend='amqp://',
             include=['proj.tasks'])  #任务文件路径列表,可添加多个任务
 
# Optional configuration, see the application user guide.
app.conf.update(
    result_expires=3600,   #任务结果保存时间
)
 
if __name__ == '__main__':
    app.start()

编辑proj/tasks.py中的内容

from __future__ import absolute_import, unicode_literals
from .celery import app  #导入同级目录下celery文件中的app


@app.task
def add(x, y):
    return x + y


@app.task
def mul(x, y):
    return x * y


@app.task
def xsum(numbers):
    return sum(numbers)

 cd到proj文件夹上一级启动worker ,命令以下

 celery -A proj worker -l debug  

 执行结果:

同时启动多个worker:

中止某个worker:(stopwait是等待当前任务完成中止,stop是当即中止)

三:celery+django项目

django 能够轻松跟celery结合实现异步任务,只需简单配置便可

 

第一步:在settings.py同级目录下,建立celery.py文件

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery
 
# set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'PERCRM.settings')    #根据具体项目配置
 
app = Celery('PERCRM')
 
# Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
#   should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')
 
# Load task modules from all registered Django app configs.
app.autodiscover_tasks()   #自动发现各个app里面建立的celery任务,能够建立多个任务
@app.task(bind=True) def debug_task(self): print('Request: {0!r}'.format(self.request))

第二步:配置settings.py同级目录下的__init__.py文件

from __future__ import absolute_import, unicode_literals

# This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app

__all__ = ['celery_app']  

第三步:配置settings.py文件  

CELERY_BROKER_URL = 'redis://:123456@192.168.2.107'
CELERY_RESULT_BACKEND = 'redis://:123456@192.168.2.107'  

第四步:建立任务文件,在APP下建立tasks.py文件

任务内容格式以下:

# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task  #能够跟其余APP共享任务


@shared_task
def add(x, y):
    return x + y


@shared_task
def mul(x, y):
    return x * y


@shared_task
def xsum(numbers):
    return sum(numbers)

 此时,基本的配置就完了,加上一条对应的视图,整个项目就能够结合celery运行了 

urls.py:

views.py

from students.tasks import add,mul


def celery_test(request):
    task = add.delay(123,456)

    return HttpResponse(task.id)

 如今咱们启动项目:

进到项目里面启动celery

此时在浏览器访问http://192.168.2.107:8866/celery_test/

结果以下,返回了celery任务id,一个简单的celery与django结合的项目就完成了

再查看服务端celery

 4、Celery 定时任务

 celery支持定时任务,设定好任务的执行时间,celery就会定时自动帮你执行, 这个定时任务模块叫celery beat

写一个脚本 叫periodic_task.py

from celery import Celery
from celery.schedules import crontab
 
app = Celery()
 
@app.on_after_configure.connect  #装饰器做用:只要脚本一启动便马上自动执行被装饰的函数
def setup_periodic_tasks(sender, **kwargs):
    # Calls test('hello') every 10 seconds.
    sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')  #每隔十秒钟,执行test函数,传入参数‘hello’,
 
    # Calls test('world') every 30 seconds
    sender.add_periodic_task(30.0, test.s('world'), expires=10)  #expires任务结果保存十秒钟
  
    # Executes every Monday morning at 7:30 a.m.
    sender.add_periodic_task(
        crontab(hour=7, minute=30, day_of_week=1),
        test.s('Happy Mondays!'),  #每周一早上十点半执行test函数
    )
 
@app.task
def test(arg):
    print(arg)

 add_periodic_task 会添加一条定时任务

上面是经过调用函数添加定时任务,也能够像写配置文件 同样的形式添加, 下面是每30s执行的任务 

app.conf.beat_schedule = {
    'add-every-30-seconds': {
        'task': 'tasks.add',
        'schedule': 30.0,
        'args': (16, 16)
    },
}
app.conf.timezone = 'UTC'

 任务添加好了,须要让celery单独启动一个进程来定时发起这些任务, 注意, 这里是发起任务,不是执行,这个进程只会不断的去检查你的任务计划, 每发现有任务须要执行了,就发起一个任务调用消息,交给celery worker去执行 

 启动任务调度器 celery beat,(注意:需写上具体的任务名)

输出:

worker打印输出:

5、在django中使用计划任务功能

第一步:安装模块

pip3 install django-celery-beat  

 第二步:在django项目的settings.py中INSTALLED_APPS的配置

第三步:配置完以后,须要同步数据库,执行migrate与makemigrations命令

 

以上操做完成以后,启动django项目,访问http://192.168.2.107:8866/admin/

在admin页面咱们会看到底部多了一个三张表出来

配置完长这样

 

 

此时启动你的celery beat 和worker,会发现每隔2分钟,beat会发起一个任务消息让worker执行scp_task任务

 

注意,经测试,每添加或修改一个任务,celery beat都须要重启一次,要否则新的配置不会被celery beat进程读到

相关文章
相关标签/搜索