给定任一个各位数字不彻底相同的 4 位正整数,若是咱们先把 4 个数字按非递增排序,再按非递减排序,而后用第 1 个数字减第 2 个数字,将获得一个新的数字。一直重复这样作,咱们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。算法
例如,咱们从6767
开始,将获得测试
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174 7641 - 1467 = 6174 ... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。spa
输入给出一个 (0,104) 区间内的正整数 N。code
若是 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;不然将计算的每一步在一行内输出,直到 6174
做为差出现,输出格式见样例。注意每一个数字按 4
位数格式输出。排序
6767
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174
2222
2222 - 2222 = 0000
这个题思路很是简单,输入数据以后对数字进行排序(从小到大),输出被减数和减数进行计算,直到遇到6174。若是被减数和减数相等,那么你输出一个0就能够跑路了。string
那么这个狗比测试点5是什么呢?就是6174本尊出现的状况。it
因此不能够简简单单用while(n!=6174)来判断呀,要用do_while结构,先把6174揍一顿再跑。io
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int main() { int num; scanf("%d",&num); do{ int res1=0,res2=0,a[4],num1; num1=num; for(int i=0;i<4;i++){ a[i]=num1%10; num1=num1/10; } sort(a,a+4); for(int i=0;i<4;i++){ res1=res1*10+a[i]; res2=res2*10+a[3-i]; } printf("%04d - %04d = %04d\n",res2,res1,res2-res1); num=res2-res1; if(res1==res2)break; } while(num!=6174); return 0; }