VGGnet 的原理及实现

VGGNet由牛津大学的视觉几何组(Visual Geometry Group)和Google DeepMind公司的研究员共同提出,是ILSVRC-2014中定位任务第一名和分类任务第二名。其突出贡献在于证明使用很小的卷积(3*3),增加网络深度可以有效提升模型的效果,而且VGGNet对其他数据集具有很好的泛化能力。到目前为止,VGGNet依然经常被用来提取图像特征。 VGGNet探索了CNN的
相关文章
相关标签/搜索