java23种设计模式3(转)

  本章是关于设计模式的最后一讲,会讲到第三种设计模式——行为型模式,共11种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。这段时间一直在写关于设计模式的东西,终于写到一半了,写博文是个很费时间的东西,由于我得为读者负责,不管是图仍是代码仍是表述,都但愿能尽可能写清楚,以便读者理解,我想不管是我仍是读者,都但愿看到高质量的博文出来,从我本人出发,我会一直坚持下去,不断更新,源源动力来自于读者朋友们的不断支持,我会尽本身的努力,写好每一篇文章!但愿你们能不断给出意见和建议,共同打造完美的博文!java

先来张图,看看这11中模式的关系:算法

第一类:经过父类与子类的关系进行实现。第二类:两个类之间。第三类:类的状态。第四类:经过中间类小程序

 

1三、策略模式(strategy)设计模式

策略模式定义了一系列算法,并将每一个算法封装起来,使他们能够相互替换,且算法的变化不会影响到使用算法的客户。须要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(无关紧要,属于辅助类),提供辅助函数,关系图以下:框架

 

图中ICalculator提供赞成的方法,
AbstractCalculator是辅助类,提供辅助方法,接下来,依次实现下每一个类:ide

首先统一接口:函数

public interface ICalculator {
    public int calculate(String exp);
}

辅助类:测试

public abstract class AbstractCalculator {
	
	public int[] split(String exp,String opt){
		String array[] = exp.split(opt);
		int arrayInt[] = new int[2];
		arrayInt[0] = Integer.parseInt(array[0]);
		arrayInt[1] = Integer.parseInt(array[1]);
		return arrayInt;
	}
}

  三个实现类:优化

public class Plus extends AbstractCalculator implements ICalculator {

    @Override
    public int calculate(String exp) {
        int arrayInt[] = split(exp,"\\+");
        return arrayInt[0]+arrayInt[1];
    }
}
public class Minus extends AbstractCalculator implements ICalculator {

	@Override
	public int calculate(String exp) {
		int arrayInt[] = split(exp,"-");
		return arrayInt[0]-arrayInt[1];
	}

}

  

public class Multiply extends AbstractCalculator implements ICalculator {

	@Override
	public int calculate(String exp) {
		int arrayInt[] = split(exp,"\\*");
		return arrayInt[0]*arrayInt[1];
	}
}

  简单的测试类:this

public class StrategyTest {

    public static void main(String[] args) {
        String exp = "2+8";
        ICalculator cal = new Plus();
        int result = cal.calculate(exp);
        System.out.println(result);
    }
}

输出:10

策略模式的决定权在用户,系统自己提供不一样算法的实现,新增或者删除算法,对各类算法作封装。所以,策略模式多用在算法决策系统中,外部用户只须要决定用哪一个算法便可。

1四、模板方法模式(Template Method)

解释一下模板方法模式,就是指:一个抽象类中,有一个主方法,再定义1...n个方法,能够是抽象的,也能够是实际的方法,定义一个类,继承该抽象类,重写抽象方法,经过调用抽象类,实现对子类的调用,先看个关系图:

 

就是在AbstractCalculator类中定义一个主方法calculate,calculate()调用spilt()等,Plus和Minus分别继承AbstractCalculator类,经过对AbstractCalculator的调用实现对子类的调用,看下面的例子:

public abstract class AbstractCalculator {
    
    /*主方法,实现对本类其它方法的调用*/
    public final int calculate(String exp,String opt){
        int array[] = split(exp,opt);
        return calculate(array[0],array[1]);
    }
    
    /*被子类重写的方法*/
    abstract public int calculate(int num1,int num2);
    
    public int[] split(String exp,String opt){
        String array[] = exp.split(opt);
        int arrayInt[] = new int[2];
        arrayInt[0] = Integer.parseInt(array[0]);
        arrayInt[1] = Integer.parseInt(array[1]);
        return arrayInt;
    }
}
public class Plus extends AbstractCalculator {

	@Override
	public int calculate(int num1,int num2) {
		return num1 + num2;
	}
}

  测试类:

public class StrategyTest {

	public static void main(String[] args) {
		String exp = "8+8";
		AbstractCalculator cal = new Plus();
		int result = cal.calculate(exp, "\\+");
		System.out.println(result);
	}
}

  

我跟踪下这个小程序的执行过程:首先将exp和"\\+"作参数,调用AbstractCalculator类里的calculate(String,String)方法,在calculate(String,String)里调用同类的split(),以后再调用calculate(int ,int)方法,从这个方法进入到子类中,执行完return num1 + num2后,将值返回到AbstractCalculator类,赋给result,打印出来。正好验证了咱们开头的思路。

1五、观察者模式(Observer)

包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得概括,记得本文最开始的那个图。观察者模式很好理解,相似于邮件订阅和RSS订阅,当咱们浏览一些博客或wiki时,常常会看到RSS图标,就这的意思是,当你订阅了该文章,若是后续有更新,会及时通知你。其实,简单来说就一句话:当一个对象变化时,其它依赖该对象的对象都会收到通知,而且随着变化!对象之间是一种一对多的关系。先来看看关系图:

 

我解释下这些类的做用:MySubject类就是咱们的主对象,Observer1和Observer2是依赖于MySubject的对象,当MySubject变化时,Observer1和Observer2必然变化。AbstractSubject类中定义着须要监控的对象列表,能够对其进行修改:增长或删除被监控对象,且当MySubject变化时,负责通知在列表内存在的对象。咱们看实现代码:

一个Observer接口:

public interface Observer {
	public void update();
}

  两个实现类:

public class Observer1 implements Observer {

    @Override
    public void update() {
        System.out.println("observer1 has received!");
    }
}
public class Observer2 implements Observer {

    @Override
    public void update() {
        System.out.println("observer2 has received!");
    }

}

Subject接口及实现类:

public interface Subject {
    
    /*增长观察者*/
    public void add(Observer observer);
    
    /*删除观察者*/
    public void del(Observer observer);
    
    /*通知全部的观察者*/
    public void notifyObservers();
    
    /*自身的操做*/
    public void operation();
}
public abstract class AbstractSubject implements Subject {

    private Vector<Observer> vector = new Vector<Observer>();
    @Override
    public void add(Observer observer) {
        vector.add(observer);
    }

    @Override
    public void del(Observer observer) {
        vector.remove(observer);
    }

    @Override
    public void notifyObservers() {
        Enumeration<Observer> enumo = vector.elements();
        while(enumo.hasMoreElements()){
            enumo.nextElement().update();
        }
    }
}
public class MySubject extends AbstractSubject {

	@Override
	public void operation() {
		System.out.println("update self!");
		notifyObservers();
	}

}

  测试类:

public class ObserverTest {

	public static void main(String[] args) {
		Subject sub = new MySubject();
		sub.add(new Observer1());
		sub.add(new Observer2());
		
		sub.operation();
	}

}

  

输出:

update self!
observer1 has received!
observer2 has received!

1六、迭代子模式(Iterator)

顾名思义,迭代器模式就是顺序访问汇集中的对象,通常来讲,集合中很是常见,若是对集合类比较熟悉的话,理解本模式会十分轻松。这句话包含两层意思:一是须要遍历的对象,即汇集对象,二是迭代器对象,用于对汇集对象进行遍历访问。咱们看下关系图:

 

这个思路和咱们经常使用的如出一辙,MyCollection中定义了集合的一些操做,MyIterator中定义了一系列迭代操做,且持有Collection实例,咱们来看看实现代码:

两个接口:

public interface Collection {
	
	public Iterator iterator();
	
	/*取得集合元素*/
	public Object get(int i);
	
	/*取得集合大小*/
	public int size();
}

  

public interface Iterator {
    //前移
    public Object previous();
    
    //后移
    public Object next();
    public boolean hasNext();
    
    //取得第一个元素
    public Object first();
}

两个实现:

public class MyCollection implements Collection {

    public String string[] = {"A","B","C","D","E"};
    @Override
    public Iterator iterator() {
        return new MyIterator(this);
    }

    @Override
    public Object get(int i) {
        return string[i];
    }

    @Override
    public int size() {
        return string.length;
    }
}
public class MyIterator implements Iterator {

    private Collection collection;
    private int pos = -1;
    
    public MyIterator(Collection collection){
        this.collection = collection;
    }
    
    @Override
    public Object previous() {
        if(pos > 0){
            pos--;
        }
        return collection.get(pos);
    }

    @Override
    public Object next() {
        if(pos<collection.size()-1){
            pos++;
        }
        return collection.get(pos);
    }

    @Override
    public boolean hasNext() {
        if(pos<collection.size()-1){
            return true;
        }else{
            return false;
        }
    }

    @Override
    public Object first() {
        pos = 0;
        return collection.get(pos);
    }

}

测试类:

public class Test {

    public static void main(String[] args) {
        Collection collection = new MyCollection();
        Iterator it = collection.iterator();
        
        while(it.hasNext()){
            System.out.println(it.next());
        }
    }
}

输出:A B C D E

此处咱们貌似模拟了一个集合类的过程,感受是否是很爽?其实JDK中各个类也都是这些基本的东西,加一些设计模式,再加一些优化放到一块儿的,只要咱们把这些东西学会了,掌握好了,咱们也能够写出本身的集合类,甚至框架!

1七、责任链模式(Chain of Responsibility)
接下来咱们将要谈谈责任链模式,有多个对象,每一个对象持有对下一个对象的引用,这样就会造成一条链,请求在这条链上传递,直到某一对象决定处理该请求。可是发出者并不清楚到底最终那个对象会处理该请求,因此,责任链模式能够实现,在隐瞒客户端的状况下,对系统进行动态的调整。先看看关系图:

 

Abstracthandler类提供了get和set方法,方便MyHandle类设置和修改引用对象,MyHandle类是核心,实例化后生成一系列相互持有的对象,构成一条链。

public interface Handler {
    public void operator();
}
public abstract class AbstractHandler {
	
	private Handler handler;

	public Handler getHandler() {
		return handler;
	}

	public void setHandler(Handler handler) {
		this.handler = handler;
	}
	
}

  

public class MyHandler extends AbstractHandler implements Handler {

    private String name;

    public MyHandler(String name) {
        this.name = name;
    }

    @Override
    public void operator() {
        System.out.println(name+"deal!");
        if(getHandler()!=null){
            getHandler().operator();
        }
    }
}
public class Test {

    public static void main(String[] args) {
        MyHandler h1 = new MyHandler("h1");
        MyHandler h2 = new MyHandler("h2");
        MyHandler h3 = new MyHandler("h3");

        h1.setHandler(h2);
        h2.setHandler(h3);

        h1.operator();
    }
}

输出:

h1deal!
h2deal!
h3deal!

此处强调一点就是,连接上的请求能够是一条链,能够是一个树,还能够是一个环,模式自己不约束这个,须要咱们本身去实现,同时,在一个时刻,命令只容许由一个对象传给另外一个对象,而不容许传给多个对象。

 1八、命令模式(Command)

命令模式很好理解,举个例子,司令员下令让士兵去干件事情,从整个事情的角度来考虑,司令员的做用是,发出口令,口令通过传递,传到了士兵耳朵里,士兵去执行。这个过程好在,三者相互解耦,任何一方都不用去依赖其余人,只须要作好本身的事儿就行,司令员要的是结果,不会去关注到底士兵是怎么实现的。咱们看看关系图:

 

Invoker是调用者(司令员),Receiver是被调用者(士兵),MyCommand是命令,实现了Command接口,持有接收对象,看实现代码:

public interface Command {
	public void exe();
}

  

public class MyCommand implements Command {

    private Receiver receiver;
    
    public MyCommand(Receiver receiver) {
        this.receiver = receiver;
    }

    @Override
    public void exe() {
        receiver.action();
    }
}
public class Receiver {
    public void action(){
        System.out.println("command received!");
    }
}
public class Invoker {
    
    private Command command;
    
    public Invoker(Command command) {
        this.command = command;
    }

    public void action(){
        command.exe();
    }
}
public class Test {

    public static void main(String[] args) {
        Receiver receiver = new Receiver();
        Command cmd = new MyCommand(receiver);
        Invoker invoker = new Invoker(cmd);
        invoker.action();
    }
}

输出:command received!

这个很哈理解,命令模式的目的就是达到命令的发出者和执行者之间解耦,实现请求和执行分开,熟悉Struts的同窗应该知道,Struts其实就是一种将请求和呈现分离的技术,其中必然涉及命令模式的思想!

本篇暂时就到这里,由于考虑到未来博文会不断的更新,不断的增长新内容,因此当前篇幅不易过长,以便你们阅读,因此接下来的放到另外一篇里。敬请关注!

相关文章
相关标签/搜索