题目连接ios
Descriptionc++
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.less
Input函数
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.spa
Outputcode
For each test case there should be single line of output answering the question posed above.ip
Sample Inputget
7
12
0input
Sample Outputit
6
4
分析:
求一个数的全部的小于该数且与该数互质的数的个数,也就是欧拉函数的应用。
直接套欧拉函数公式,即将n素分解后有n=p1^k1p2^k2…pm^km,则euler(n)=n(1-1/p1)(1-1/p2)…*(1-1/pm) 。
代码:
#include<cstdio> #include<iostream> using namespace std; typedef long long ll; ll get_euler(ll n)//欧拉函数的应用 { ll ans=n; for(ll i=2; i*i<=n; i++) { if(n%i==0) { ans=ans/i*(i-1); while(n%i==0) n/=i; } } if(n>1) ans=ans/n*(n-1); return ans; } int main() { ll n; while(scanf("%lld",&n),n) printf("%lld\n",get_euler(n)); return 0; }