网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更常常的称为网页追逐者),是一种按照必定的规则,自动地抓取万维网信息的程序或者脚本。另一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。html
关于Python的爬虫框架Scrapy
python
请移步至这篇博文——>>> Python爬虫框架——Scrapy
git
Requests
Python标准库中提供了:urllib、urllib二、httplib等模块以供Http请求,可是,它的 API 太渣了。它是为另外一个时代、另外一个互联网所建立的。它须要巨量的工做,甚至包括各类方法覆盖,来完成最简单的任务。github
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests能够垂手可得的完成浏览器可有的任何操做。json
一、GET请求api
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
# 一、无参数实例
import
requests
ret
=
requests.get(
'https://github.com/timeline.json'
)
print
(ret.url)
print
(ret.text)
# 二、有参数实例
import
requests
payload
=
{
'key1'
:
'value1'
,
'key2'
:
'value2'
}
ret
=
requests.get(
"http://httpbin.org/get"
, params
=
payload)
print
(ret.url)
print
(ret.text)
|
二、POST请求浏览器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
# 一、基本POST实例
import
requests
payload
=
{
'key1'
:
'value1'
,
'key2'
:
'value2'
}
ret
=
requests.post(
"http://httpbin.org/post"
, data
=
payload)
print
(ret.text)
# 二、发送请求头和数据实例
import
requests
import
json
url
=
'https://api.github.com/some/endpoint'
payload
=
{
'some'
:
'data'
}
headers
=
{
'content-type'
:
'application/json'
}
ret
=
requests.post(url, data
=
json.dumps(payload), headers
=
headers)
print
(ret.text)
print
(ret.cookies)
|
三、其它请求服务器
1
2
3
4
5
6
7
8
9
10
|
requests.get(url, params
=
None
,
*
*
kwargs)
requests.post(url, data
=
None
, json
=
None
,
*
*
kwargs)
requests.put(url, data
=
None
,
*
*
kwargs)
requests.head(url,
*
*
kwargs)
requests.delete(url,
*
*
kwargs)
requests.patch(url, data
=
None
,
*
*
kwargs)
requests.options(url,
*
*
kwargs)
# 以上方法均是在此方法的基础上构建
requests.request(method, url,
*
*
kwargs)
|
四、更多参数微信

def request(method, url, **kwargs): """Constructs and sends a :class:`Request <Request>`. :param method: method for the new :class:`Request` object. :param url: URL for the new :class:`Request` object. :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`. :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json data to send in the body of the :class:`Request`. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`. :param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': file-tuple}``) for multipart encoding upload. ``file-tuple`` can be a 2-tuple ``('filename', fileobj)``, 3-tuple ``('filename', fileobj, 'content_type')`` or a 4-tuple ``('filename', fileobj, 'content_type', custom_headers)``, where ``'content-type'`` is a string defining the content type of the given file and ``custom_headers`` a dict-like object containing additional headers to add for the file. :param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple :param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed. :type allow_redirects: bool :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy. :param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``. :param stream: (optional) if ``False``, the response content will be immediately downloaded. :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair. :return: :class:`Response <Response>` object :rtype: requests.Response Usage:: >>> import requests >>> req = requests.request('GET', 'http://httpbin.org/get') <Response [200]> """

def param_method_url(): # requests.request(method='get', url='http://127.0.0.1:8000/test/') # requests.request(method='post', url='http://127.0.0.1:8000/test/') pass def param_param(): # - 能够是字典 # - 能够是字符串 # - 能够是字节(ascii编码之内) # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params="k1=v1&k2=水电费&k3=v3&k3=vv3") # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params=bytes("k1=v1&k2=k2&k3=v3&k3=vv3", encoding='utf8')) # 错误 # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params=bytes("k1=v1&k2=水电费&k3=v3&k3=vv3", encoding='utf8')) pass def param_data(): # 能够是字典 # 能够是字符串 # 能够是字节 # 能够是文件对象 # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data="k1=v1; k2=v2; k3=v3; k3=v4" # ) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data="k1=v1;k2=v2;k3=v3;k3=v4", # headers={'Content-Type': 'application/x-www-form-urlencoded'} # ) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data=open('data_file.py', mode='r', encoding='utf-8'), # 文件内容是:k1=v1;k2=v2;k3=v3;k3=v4 # headers={'Content-Type': 'application/x-www-form-urlencoded'} # ) pass def param_json(): # 将json中对应的数据进行序列化成一个字符串,json.dumps(...) # 而后发送到服务器端的body中,而且Content-Type是 {'Content-Type': 'application/json'} requests.request(method='POST', url='http://127.0.0.1:8000/test/', json={'k1': 'v1', 'k2': '水电费'}) def param_headers(): # 发送请求头到服务器端 requests.request(method='POST', url='http://127.0.0.1:8000/test/', json={'k1': 'v1', 'k2': '水电费'}, headers={'Content-Type': 'application/x-www-form-urlencoded'} ) def param_cookies(): # 发送Cookie到服务器端 requests.request(method='POST', url='http://127.0.0.1:8000/test/', data={'k1': 'v1', 'k2': 'v2'}, cookies={'cook1': 'value1'}, ) # 也可使用CookieJar(字典形式就是在此基础上封装) from http.cookiejar import CookieJar from http.cookiejar import Cookie obj = CookieJar() obj.set_cookie(Cookie(version=0, name='c1', value='v1', port=None, domain='', path='/', secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False, port_specified=False, domain_specified=False, domain_initial_dot=False, path_specified=False) ) requests.request(method='POST', url='http://127.0.0.1:8000/test/', data={'k1': 'v1', 'k2': 'v2'}, cookies=obj) def param_files(): # 发送文件 # file_dict = { # 'f1': open('readme', 'rb') # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', open('readme', 'rb')) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf") # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'}) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) pass def param_auth(): from requests.auth import HTTPBasicAuth, HTTPDigestAuth ret = requests.get('https://api.github.com/user', auth=HTTPBasicAuth('wupeiqi', 'sdfasdfasdf')) print(ret.text) # ret = requests.get('http://192.168.1.1', # auth=HTTPBasicAuth('admin', 'admin')) # ret.encoding = 'gbk' # print(ret.text) # ret = requests.get('http://httpbin.org/digest-auth/auth/user/pass', auth=HTTPDigestAuth('user', 'pass')) # print(ret) # def param_timeout(): # ret = requests.get('http://google.com/', timeout=1) # print(ret) # ret = requests.get('http://google.com/', timeout=(5, 1)) # print(ret) pass def param_allow_redirects(): ret = requests.get('http://127.0.0.1:8000/test/', allow_redirects=False) print(ret.text) def param_proxies(): # proxies = { # "http": "61.172.249.96:80", # "https": "http://61.185.219.126:3128", # } # proxies = {'http://10.20.1.128': 'http://10.10.1.10:5323'} # ret = requests.get("http://www.proxy360.cn/Proxy", proxies=proxies) # print(ret.headers) # from requests.auth import HTTPProxyAuth # # proxyDict = { # 'http': '77.75.105.165', # 'https': '77.75.105.165' # } # auth = HTTPProxyAuth('username', 'mypassword') # # r = requests.get("http://www.google.com", proxies=proxyDict, auth=auth) # print(r.text) pass def param_stream(): ret = requests.get('http://127.0.0.1:8000/test/', stream=True) print(ret.content) ret.close() # from contextlib import closing # with closing(requests.get('http://httpbin.org/get', stream=True)) as r: # # 在此处理响应。 # for i in r.iter_content(): # print(i) def requests_session(): import requests session = requests.Session() ### 一、首先登录任何页面,获取cookie i1 = session.get(url="http://dig.chouti.com/help/service") ### 二、用户登录,携带上一次的cookie,后台对cookie中的 gpsd 进行受权 i2 = session.post( url="http://dig.chouti.com/login", data={ 'phone': "8615131255089", 'password': "xxxxxx", 'oneMonth': "" } ) i3 = session.post( url="http://dig.chouti.com/link/vote?linksId=8589623", ) print(i3.text)
官方文档:http://cn.python-requests.org/zh_CN/latest/user/quickstart.html#id4cookie
BeautifulSoup
BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,而后将其进行格式化,以后遍可使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。
# 安装 pip3 install beautifulsoup4

from bs4 import BeautifulSoup html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> asdf <div class="title"> <b>The Dormouse's story总共</b> <h1>f</h1> </div> <div class="story">Once upon a time there were three little sisters; and their names were <a class="sister0" id="link1">Els<span>f</span>ie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</div> ad<br/>sf <p class="story">...</p> </body> </html> """ soup = BeautifulSoup(html_doc, features="lxml") # 找到第一个a标签 tag1 = soup.find(name='a') # 找到全部的a标签 tag2 = soup.find_all(name='a') # 找到id=link2的标签 tag3 = soup.select('#link2')
1,name,标签名称
1
2
3
4
5
|
tag
=
soup.find(
'a'
)
name
=
tag.name
# 获取
print
(name)
tag.name
=
'span'
# 设置
print
(soup)
|
2,attr,标签属性
1
2
3
4
5
6
|
tag
=
soup.find(
'a'
)
attrs
=
tag.attrs
# 获取
print
(attrs)
tag.attrs
=
{
'ik'
:
123
}
# 设置
tag.attrs[
'id'
]
=
'iiiii'
# 设置
print
(soup)
|
3,children,全部子标签
1
2
|
body
=
soup.find(
'body'
)
v
=
body.children
|
4,descendants,全部子子孙孙标签
1
2
|
body
=
soup.find(
'body'
)
v
=
body.descendants
|
5,clear,将标签的全部子标签所有清空(保留标签名)
1
2
3
|
tag
=
soup.find(
'body'
)
tag.clear()
print
(soup)
|
6,decompose,递归的删除全部的标签
1
2
3
|
body
=
soup.find(
'body'
)
body.decompose()
print
(soup)
|
7,extract,递归的删除全部的标签,并获取删除的标签
1
2
3
|
body
=
soup.find(
'body'
)
v
=
body.extract()
print
(soup)
|
8,decode,转换为字符串(含当前标签);decode_contents(不含当前标签)
1
2
3
4
|
body
=
soup.find(
'body'
)
v
=
body.decode()
v
=
body.decode_contents()
print
(v)
|
9,encode,转换为字节(含当前标签);encode_contents(不含当前标签)
1
2
3
4
|
body
=
soup.find(
'body'
)
v
=
body.encode()
v
=
body.encode_contents()
print
(v)
|
10,find,获取匹配的第一个标签
1
2
3
4
5
|
tag
=
soup.find(
'a'
)
print
(tag)
tag
=
soup.find(name
=
'a'
, attrs
=
{
'class'
:
'sister'
}, recursive
=
True
, text
=
'Lacie'
)
tag
=
soup.find(name
=
'a'
,
class_
=
'sister'
, recursive
=
True
, text
=
'Lacie'
)
print
(tag)
|
11, find_all,获取匹配的全部标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
tags
=
soup.find_all(
'a'
)
print
(tags)
tags
=
soup.find_all(
'a'
,limit
=
1
)
print
(tags)
tags
=
soup.find_all(name
=
'a'
, attrs
=
{
'class'
:
'sister'
}, recursive
=
True
, text
=
'Lacie'
)
tags
=
soup.find(name
=
'a'
,
class_
=
'sister'
, recursive
=
True
, text
=
'Lacie'
)
print
(tags)
####### 列表 #######
v
=
soup.find_all(name
=
[
'a'
,
'div'
])
print
(v)
v
=
soup.find_all(
class_
=
[
'sister0'
,
'sister'
])
print
(v)
v
=
soup.find_all(text
=
[
'Tillie'
])
print
(v,
type
(v[
0
]))
v
=
soup.find_all(
id
=
[
'link1'
,
'link2'
])
print
(v)
v
=
soup.find_all(href
=
[
'link1'
,
'link2'
])
print
(v)
# ####### 正则 #######
import
re
rep
=
re.
compile
(
'p'
)
rep
=
re.
compile
(
'^p'
)
v
=
soup.find_all(name
=
rep)
print
(v)
rep
=
re.
compile
(
'sister.*'
)
v
=
soup.find_all(
class_
=
rep)
print
(v)
rep
=
re.
compile
(
'http://www.oldboy.com/static/.*'
)
v
=
soup.find_all(href
=
rep)
print
(v)
####### 方法筛选 #######
def
func(tag):
return
tag.has_attr(
'class'
)
and
tag.has_attr(
'id'
)
v
=
soup.find_all(name
=
func)
print
(v)
## get,获取标签属性
tag
=
soup.find(
'a'
)
v
=
tag.get(
'id'
)
print
(v)
|
12,has_attr,检查标签是否具备该属性
1
2
3
|
tag
=
soup.find(
'a'
)
v
=
tag.has_attr(
'id'
)
print
(v)
|
13,get_text,获取标签内部文本内容
1
2
3
|
tag
=
soup.find(
'a'
)
v
=
tag.get_text(
'id'
)
print
(v)
|
14,index,检查标签在某标签中的索引位置
1
2
3
4
5
6
7
|
tag
=
soup.find(
'body'
)
v
=
tag.index(tag.find(
'div'
))
print
(v)
tag
=
soup.find(
'body'
)
for
i,v
in
enumerate
(tag):
print
(i,v)
|
15,is_empty_element,是不是空标签(是否能够是空)或者自闭合标签,
判断是不是以下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'
1
2
3
|
tag
=
soup.find(
'br'
)
v
=
tag.is_empty_element
print
(v)
|
16,当前的关联标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
soup.
next
soup.next_element
soup.next_elements
soup.next_sibling
soup.next_siblings
tag.previous
tag.previous_element
tag.previous_elements
tag.previous_sibling
tag.previous_siblings
tag.parent
tag.parents
|
17,查找某标签的关联标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
tag.find_next(...)
tag.find_all_next(...)
tag.find_next_sibling(...)
tag.find_next_siblings(...)
tag.find_previous(...)
tag.find_all_previous(...)
tag.find_previous_sibling(...)
tag.find_previous_siblings(...)
tag.find_parent(...)
tag.find_parents(...)
参数同find_all
|
18,select,select_one, CSS选择器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
soup.select(
"title"
)
soup.select(
"p nth-of-type(3)"
)
soup.select(
"body a"
)
soup.select(
"html head title"
)
tag
=
soup.select(
"span,a"
)
soup.select(
"head > title"
)
soup.select(
"p > a"
)
soup.select(
"p > a:nth-of-type(2)"
)
soup.select(
"p > #link1"
)
soup.select(
"body > a"
)
soup.select(
"#link1 ~ .sister"
)
soup.select(
"#link1 + .sister"
)
soup.select(
".sister"
)
soup.select(
"[class~=sister]"
)
soup.select(
"#link1"
)
soup.select(
"a#link2"
)
soup.select(
'a[href]'
)
soup.select(
'a[href="http://example.com/elsie"]'
)
soup.select(
'a[href^="http://example.com/"]'
)
soup.select(
'a[href$="tillie"]'
)
soup.select(
'a[href*=".com/el"]'
)
from
bs4.element
import
Tag
def
default_candidate_generator(tag):
for
child
in
tag.descendants:
if
not
isinstance
(child, Tag):
continue
if
not
child.has_attr(
'href'
):
continue
yield
child
tags
=
soup.find(
'body'
).select(
"a"
, _candidate_generator
=
default_candidate_generator)
print
(
type
(tags), tags)
from
bs4.element
import
Tag
def
default_candidate_generator(tag):
for
child
in
tag.descendants:
if
not
isinstance
(child, Tag):
continue
if
not
child.has_attr(
'href'
):
continue
yield
child
tags
=
soup.find(
'body'
).select(
"a"
, _candidate_generator
=
default_candidate_generator, limit
=
1
)
print
(
type
(tags), tags)
|
19,标签的内容
1
2
3
4
5
6
7
8
9
10
11
12
13
|
tag
=
soup.find(
'span'
)
print
(tag.string)
# 获取
tag.string
=
'new content'
# 设置
print
(soup)
tag
=
soup.find(
'body'
)
print
(tag.string)
tag.string
=
'xxx'
print
(soup)
tag
=
soup.find(
'body'
)
v
=
tag.stripped_strings
# 递归内部获取全部标签的文本
print
(v)
|
20,append在当前标签内部追加一个标签
1
2
3
4
5
6
7
8
9
10
|
tag
=
soup.find(
'body'
)
tag.append(soup.find(
'a'
))
print
(soup)
from
bs4.element
import
Tag
obj
=
Tag(name
=
'i'
,attrs
=
{
'id'
:
'it'
})
obj.string
=
'我是一个新来的'
tag
=
soup.find(
'body'
)
tag.append(obj)
print
(soup)
|
21,insert在当前标签内部指定位置插入一个标签
1
2
3
4
5
6
|
from
bs4.element
import
Tag
obj
=
Tag(name
=
'i'
, attrs
=
{
'id'
:
'it'
})
obj.string
=
'我是一个新来的'
tag
=
soup.find(
'body'
)
tag.insert(
2
, obj)
print
(soup)
|
22,insert_after,insert_before 在当前标签后面或前面插入
1
2
3
4
5
6
7
|
from
bs4.element
import
Tag
obj
=
Tag(name
=
'i'
, attrs
=
{
'id'
:
'it'
})
obj.string
=
'我是一个新来的'
tag
=
soup.find(
'body'
)
# tag.insert_before(obj)
tag.insert_after(obj)
print
(soup)
|
23,replace_with 在当前标签替换为指定标签
1
2
3
4
5
6
|
from
bs4.element
import
Tag
obj
=
Tag(name
=
'i'
, attrs
=
{
'id'
:
'it'
})
obj.string
=
'我是一个新来的'
tag
=
soup.find(
'div'
)
tag.replace_with(obj)
print
(soup)
|
24,建立标签之间的关系
1
2
3
4
|
tag
=
soup.find(
'div'
)
a
=
soup.find(
'a'
)
tag.setup(previous_sibling
=
a)
print
(tag.previous_sibling)
|
25,wrap,将指定标签把当前标签包裹起来
1
2
3
4
5
6
7
8
9
10
11
|
from
bs4.element
import
Tag
obj1
=
Tag(name
=
'div'
, attrs
=
{
'id'
:
'it'
})
obj1.string
=
'我是一个新来的'
tag
=
soup.find(
'a'
)
v
=
tag.wrap(obj1)
print
(soup)
tag
=
soup.find(
'a'
)
v
=
tag.wrap(soup.find(
'p'
))
print
(soup)
|
26,unwrap,去掉当前标签,将保留其包裹的标签
1
2
3
|
tag
=
soup.find(
'a'
)
v
=
tag.unwrap()
print
(soup)
|
更多参数官方:http://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/
"破解"微信公众号
根据Django和Requests分析破解微信公众号
"破解"微信公众号其实就是使用Python代码自动实现【扫码登录我的微信】->【获取我的全部联系人】-> 【向某联系人或群组或公众号发送消息】。以下图
那么,是如何登录获取联系人的呢???
代码及解释请移步——>>> https://github.com/bingdujianer/WebWeChat