NLP --- 条件随机场CRF详解

上一节我们介绍了CRF的背景,本节开始进入CRF的正式的定义,简单来说条件随机场就是定义在隐马尔科夫过程的无向图模型,外加可观测符号X,这个X是整个可观测向量。而我们前面学习的HMM算法,默认可观测符号是独立的,但是根据我们的实际语言来说,独立性的假设太牵强,不符合我们的语言规则,因此在HMM的基础上,我们把可观测符号的独立性假设去掉。同时我们知道HMM的解法是通过期望最大化进行求解,而CRF是通
相关文章
相关标签/搜索