使用C#实现一个二叉树及其基本操做, 配合xunit来作单元测试; 因此数据结构的定义和算法均使用C#实现;node
二叉树或为空树, 或是由一个根结点加上两棵分别称为左子树和右子树的、互不交的二叉树组成;算法
二叉树遍历的递归算法比较简洁, 思路比较清晰, 可是非递归的版本, 我的以为有点难度, 我最开始看的北大一个课程中的二叉树的非递归算法, 思路很巧妙, 可是不是那么容易想到的, 后来我本身思考了一段时间, 实现了我本身版本的非递归遍历算法;数据结构
这里我用xunit作的单元测试来验证算法, 测试代码可能不是很规范...app
数据结构的定义:性能
public class BinaryTree<T> { public T Value { get; set; } public BinaryTree<T> Left { get; set; } public BinaryTree<T> Right { get; set; } public BinaryTree() : this(default, null, null) { } public BinaryTree( T value, BinaryTree<T> left = null, BinaryTree<T> right = null) { Left = left; Right = right; Value = value; } ... }
/// <summary> /// 先序遍历 /// </summary> /// <param name="node">树根</param> /// <param name="depth">树的层树</param> /// <param name="action">委托, 指望对当前节点执行的操做</param> protected static void PreOrderTraversal( BinaryTree<T> node, int depth, Action<BinaryTree<T>, int> action) { action.Invoke(node, depth); if (node.Left != null) PreOrderTraversal(node.Left, depth + 1, action); if (node.Right != null) PreOrderTraversal(node.Right, depth + 1, action); }
测试代码:单元测试
[Fact] public void PreOrderTraversalTest() { StringBuilder sb = new StringBuilder(); string result = null; foreach (var d in _data) { d.Item1.PreOrderTraversal( (n, l) => sb.Append($"{n.Value} ")); result = sb.ToString().TrimEnd(); Assert.Equal<string>(result, d.Item2); sb.Clear(); } }
/// <summary> /// 二叉树前序遍历非递归版本 /// </summary> /// <param name="action">委托, 指望对当前节点执行的操做</param> public void PreOrderTraversalWithoutRecusion2( Action<BinaryTree<T>, int> action) { Stack<NodeWrapper> stack = new Stack<NodeWrapper>(); NodeWrapper wrapper = new NodeWrapper(this, true); stack.Push(wrapper); while(stack.Count > 0) { wrapper = stack.Pop(); action(wrapper.Node, 1); if(wrapper.Node.Right != null) stack.Push(new NodeWrapper(wrapper.Node.Right, true)); if((wrapper.Node.Left != null) && wrapper.FromLeft) stack.Push(new NodeWrapper(wrapper.Node.Left, true)); else if(stack.Count > 0 && wrapper.Node.Right != null) stack.Peek().FromLeft = false; } }
测试代码相似非递归版本, 这里为了节省篇幅就不贴了;测试
/// <summary> /// 中序遍历 /// </summary> /// <param name="node">树根</param> /// <param name="level">树的层树</param> /// <param name="action">委托, 指望对当前节点执行的操做</param> protected static void InOrderTraversal( BinaryTree<T> node, int level, Action<BinaryTree<T>, int> action) { if (node.Left != null) InOrderTraversal(node.Left, level + 1, action); action.Invoke(node, level); if (node.Right != null) InOrderTraversal(node.Right, level + 1, action); }
测试代码:ui
[Fact] public void InOrderTraversalTest() { StringBuilder sb = new StringBuilder(); string result = null; foreach (var d in _data) { d.Item1.InOrderTraversal( (n, l) => sb.Append($"{n.Value} ")); result = sb.ToString().TrimEnd(); Assert.Equal<string>(result, d.Item3); sb.Clear(); } }
/// <summary> /// 自定义类代替Tuple, 实现不递归的中序遍历, 使用Tuple会致使性能问题 /// (当须要修改栈顶元素的成员变量时, 没法修改为员, 只能先出栈->从新建立对象->再入栈)!!! /// </summary> /// <param name="action"></param> public void InOrderTraversalWithoutRecusion3(Action<BinaryTree<T>, int> action) { Stack<NodeWrapper> stack = new Stack<NodeWrapper>(); NodeWrapper wrapper = new NodeWrapper(this, true); stack.Push(wrapper); while (stack.Count > 0) { wrapper = stack.Pop(); if (wrapper.Node.Left != null && wrapper.FromLeft) { stack.Push(wrapper); stack.Push(new NodeWrapper(wrapper.Node.Left, true)); } else { action(wrapper.Node, 1); // 访问节点 if (wrapper.Node.Right != null) stack.Push(new NodeWrapper(wrapper.Node.Right, true)); else if (stack.Count > 0) stack.Peek().FromLeft = false; } } }
测试代码相似非递归版本, 这里为了节省篇幅就不贴了;this
/// <summary> /// 后序遍历 /// </summary> /// <param name="node">树根</param> /// <param name="level">树的层树</param> /// <param name="action">委托, 指望对当前节点执行的操做</param> protected static void PostOrderTraversal( BinaryTree<T> node, int level, Action<BinaryTree<T>, int> action) { if (node.Left != null) PostOrderTraversal(node.Left, level + 1, action); if (node.Right != null) PostOrderTraversal(node.Right, level + 1, action); action.Invoke(node, level); }
测试代码code
[Fact] public void PostOrderTraversalTest() { StringBuilder sb = new StringBuilder(); string result = null; foreach (var d in _data) { d.Item1.PostOrderTraversal( (n, l) => sb.Append($"{n.Value} ")); result = sb.ToString().TrimEnd(); Assert.Equal<string>(d.Item4, result); sb.Clear(); } }
/// <summary> /// 二叉树后序遍历非递归版本 /// </summary> /// <param name="action"></param> public void PostOrderTraversalWithoutRecusion2(Action<BinaryTree<T>, int> action) { Stack<NodeWrapper> stack = new Stack<NodeWrapper>(); NodeWrapper wrapper = new NodeWrapper(this, false); stack.Push(wrapper); while (stack.Count > 0) { wrapper = stack.Pop(); if (wrapper.Node.Left != null && !wrapper.FromLeft) { stack.Push(wrapper); stack.Push(new NodeWrapper(wrapper.Node.Left, false)); } else { if(stack.Count > 0) stack.Peek().FromLeft = true; if (wrapper.Node.Right != null && !wrapper.FromRight) { wrapper.FromRight = true; stack.Push(wrapper); stack.Push(new NodeWrapper(wrapper.Node.Right, false)); } else action(wrapper.Node, 1); } } }
测试代码相似非递归版本, 这里为了节省篇幅就不贴了;